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Abstract In order to describe the velocity and the anaerobic energy of two runners
competing against each other for middle-distance races, we present a mathematical
model relying on an optimal control problem for a system of ordinary differential
equations. The model is based on energy conservation and on Newton’s second law:
resistive forces, propulsive forces and variations in the maximal oxygen uptake are
taken into account. The interaction between the runners provides a minimum for
staying 1 m behind one’s competitor. We perform numerical simulations and show
how a runner can win a race against someone stronger by taking advantage of staying
behind, or how they can improve their personal record by running behind someone
else. Our simulations show when it is the best time to overtake, depending on the
difference between the athletes. Finally, we compare our numerical results with real
data from the men’s 1500 m finals of different competitions.

Keywords Optimization - Running strategies - Mathematics of sport - Optimal
control - Middle-distance races

1 Introduction

The running strategy to win an Olympic medal is quite complex. It relies on outstanding
physiology, good preparation, psychological factors and the optimal way to compete
with the others to beat them. Quite a few mathematical works starting with Keller’s
(1974) have analysed running strategies for a single runner (Aftalion and Bonnans
2014; Behncke 1993; Mathis 1989; Morton 1986; Woodside 1991), but very few take
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into account the competition situation where the point is to beat the others (Kyle 1979;
Pitcher 2009).

The point of view of Keller (1974) is to write the equations governing the energy
and the velocity of a single runner, starting from Newton’s second law and energy
conservation. He considers a simple problem, in which the athlete runs alone on a
straight path of length D, and the aim is to minimize the time 7 when the runner reaches
the final distance D. This model matches the final times of world records. However,
some hypotheses are not physiologically reasonable, and this leads to a non-realistic
velocity profile. Some authors have tried to improve Keller’s model: Woodside (1991)
and Mathis (1989) introduce a correction by adding a fatigue term for long races. Ward-
Smith (1985) and Morton (1986, 1996, 2006) follow a different approach. Morton
has introduced a three component model to take into account the variations in the
oxygen uptake (VO3) but the full optimal control problem is not solved. Behncke
(1993) incorporates the hydraulic model of Morton to a biomechanical model that
extends the ones of Keller and Ward-Smith: it is more detailed in terms of resistive
forces and takes into account the reaction time of the athlete. Aftalion and Bonnans
(2014) improve the models of Keller (1974), Behncke (1993) and Morton (1986, 1996,
2006) and assume that maximal oxygen uptake is a function of the anaerobic energy of
the athlete. The aim is to match experimental measurements, in particular, in (Hanon
et al. 2008; Hanon and Thomas 2011; Thomas et al. 2005), where Hanon et al. show
how the oxygen uptake varies during races of 400, 800 and 1500 m. They solve the
full numerical control problem using an optimal control solver Bocop.

As pointed out by Pitcher (2009), in middle-distance running, it is common practice
to try to position oneself behind but within striking distance of the leader for most of
the race and then overtake them near the finish line. Pitcher explains that the runner
behind can take advantage of the slipstream of the runner in front and relies on analyses
of Pugh (1971) and Kyle (1979). We believe that it is a combination of slipstream and
psychological factors which explain why it is better to stay behind, and the equations
can incorporate all this. The weakness of Pitcher’s paper is that she imposes a strategy
for one of the runners and allows only the second runner to have a free strategy.
Therefore, in this paper, based on the recent work of Aftalion and Bonnans (2014),
we extend the model of Pitcher (2009) to include slipstream and psychological factors
in a two-runners race and we set a realistic optimal control problem with each runner
having a free strategy.

1.1 Mathematical Model for a Single Runner

The system of Keller couples together the velocity of the runner at instant #, v(t), the
energy of the runner at instant ¢, e(¢), and the propulsive force of the runner at instant
t, f(¢). The first equation is Newton’s second law: it involves the propulsive force and
the friction. Here, 7 is a constant coefficient which gathers together all the friction
effects, supposed to be linear in v. The friction term can be modified to include air
resistance (Kyle 1979) which adds a term in —cv? to the first equation.

The second equation is an energy balance incorporating the oxygen uptake, o, con-
sidered constant in Keller’s paper, whilst the second term is the work of the propulsive
force f. Both equations are normalized with respect to the runner’s mass:
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() = f(t) — @ v(0)=0,x(0)=0, x(T)=D

ety =0 — f(Hv@) e0) =e". M

We use the dot notation to indicate the derivative with respect to time, i.e. v = % and

e = %f We have set x (¢) to be the position so that X = v. The final time T is defined

as the time to reach the distance D. Moreover, e? is the initial energy. It is necessary
to add some physiological constraints to the system (1):

o the energy must be positive:
e(t)y >0 Vt>0; 2

o the propulsive force has an upper bound which depends on the runner’s physiology,
and a positive lower bound due to the fact that they are moving forwards:

0<f@®=/fm V6 =0. 3

Therefore, in this model, the athlete is identified by four parameters: ¢, the initial
energy, T, the friction coefficient, o, the oxygen uptake, and fj1 the maximal propulsive
force. The aim is to solve (1)-(2)—(3) in such a way that, given a distance D, the final
time 7 is minimal. From a mathematical point of view, it is a problem of optimal
control: the propulsive force f is the control variable and the time 7 is the cost
functional to be minimized, which depends on f through the states variables v and e.
Therefore, the problem can be written as follows:

ﬁ?ﬂﬁsL(mﬂL (4)

where F is the set of admissible controls:
F={f:0=<f@) < fm Vt=0}.

In his work, Keller (1974) claims that his energy balance takes into account only the
aerobic energy (i.e. energy provided by oxygen consumption). However, Aftalion and
Bonnans (2014) remark that what he encompasses in the balance is the accumulated
oxygen deficit: e¥ — e(r). Therefore, e(¢) in Eq. (1) is in fact the anaerobic energy
(i.e. energy provided by glycogen and lactate). In order to reproduce the results of
(Hanon et al. 2008, 2010; Hanon and Thomas 2011), the oxygen uptake o introduced
in (Aftalion and Bonnans 2014) is piecewise defined: in the most part of the race, o
is constant equal to its maximal value oy, but it is increasing at the beginning of the
race, and decreasing at the end (see Fig. 1). In fact, o depends on five parameters: the
initial value at rest oy, the maximal value omax, the final value of and two parameters
¢ and e, which denote the transition point from one zone to another, ¢, e.; € (0, 1):
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Fig. 1 Typical curve o versus (% — e) for a 1500 m race
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The oxygen uptake o as defined in (5) is continuous but not C'. In the numerical
simulations, it has been smoothed, since from the physiology, itis clear that the passage
from one zone to the other occurs smoothly. The sigma used is shown in Fig. 1. Let
us observe that, consistently with Hanon experimental results (Hanon et al. 2010), the
functional form of o does not change with the athlete, whilst the values of opax and
or do.

Moreover, in (Aftalion and Bonnans 2014), a second modification is introduced
to the energy equation: for sufficiently long races (longer than 1000 m), it has been
observed that slowing down recreates some of the anaerobic energy. Therefore, the
energy equation results in:

¢=oa(e) +n@) — fv,
where 1 depends on the acceleration v and has the following form:
0 ifo>0
V) = 6
n) [cn|i)|2 if o <0, ©

where ¢, is a constant to be tuned. This leads to oscillations in the velocity profile
(cf. Aftalion and Bonnans 2014, Fig. 2.4). In this paper, we will not focus on the
term 1 and on the causes of the oscillations: we will briefly present some numerical
results obtained with the term 7 in one simple case. For further details, see Aftalion
and Bonnans (2014).
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1.2 Equations for Two Runners

In real races, the competition between runners has a fundamental impact on the strat-
egy. Starting from the works of Keller (1974), Quinn (2004) and Kyle (1979), Pitcher
introduces a two-runners model in (Pitcher 2009) based on the slipstream. The obser-
vation is that running behind someone can save 1 or 2s per lap in middle-distance
races. Therefore, in the equations, the friction gets reduced when runners are just
behind their competitor.

Some of the quantities in this model have a subscript i, which refers to the runner
i: therefore x;, v; and e; are, respectively, the position, the velocity and the energy
of runner-i. All the physiological parameters which depend on the runner have the
subscript i, too. Finally, the state variable xp represents the distance between the
runners, defined as xp := x — x1. The energy balance for each runner is the same
as in (1), with a constant value of o, while the dynamics equation incorporates an
aerodynamical term. Because it is the relative position which is important, instead of
using x;, the position of each runner as parameters, we use x| and the relative position
xp. The resulting model is the following: fori =1, 2

(% = v x1(0) =0

Xp =2 — v xp(0) =0

U = f1 — % - clv% (1 -y (ef"‘(XDfﬁ)z)) v1(0) =0 )
= 2 21— —a(xp+B)> —

b= fo— 2 - e (1 y (e )) 12 (0) = 0

¢ = 0i — fivi ei(0) = ¢}.

Asin Keller’s model, the velocities and energies equations are normalized with respect
to the mass of the runner. The term —¢; vl.2 is the friction with the air. It is necessary
to highlight and separate the effect of the friction with the air from the other ones,
because it is the only one that is reduced while running in the slipstream of someone
else. This frictional term is modulated by 1 — y (e_“("Diﬂ)z), which is shown in Fig. 2.

The parameter B represents the optimal distance a runner should keep from the
other in order to obtain the maximal reduction of the air friction, while y € (0, 1)
is the percentage reduction at the optimal distance. The parameter « is an index of
the variance of the phenomenon and is chosen large enough so that the exponential
term becomes negligible as we deviate by half a metre from 5. We observe that the
choice of a non-symmetric term would probably be more accurate and realistic, but
more complicated and with more parameter to estimate: for these reasons, in this
work we use the term suggested by Pitcher (2009), which gives reasonable results
when compared to real races. The parameters «, 8 and y do not depend on the runner,
however the parameter c is related to the drag coefficient and depends on the shape
and surface properties of the athlete’s body (see Quinn (2004) for further details). For
simplicity, in this work, we consider c; = ¢y = c. If ever the athletes have different
masses, then we would have mc; = mac).

The problem has physiological constraints:
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Fig. 2 Term that modulates the friction with the air in the two-runners model

ei(t)>0 vVt>0,i=1,2. )

In order to have the state equations for both runners defined on the same time interval,
Pitcher chooses a fixed final time 7. Moreover, she fixes the running strategy of runner
1 (therefore f1(t) is given), as the optimal strategy they would adopt if running alone,
therefore the only control is f>(¢). Formally, the resulting optimization problem is:

max xp(7) s.t. (7)—(8). )
fheF

Itis clear that this strategy is not realistic, because all the runners adapt their strategy
according to the performances of their opponents. In fact, one of the crucial point in a
two-runners problem is how to model competition between them: some possible ways
are game theory or multi-objective optimization. However, in this work, as explained
below, we model the competition by leaving both strategies free, therefore having two
controls, f1 and f>, and by encompassing in the cost functional the distance between
the runners at the final time.

2 Mathematical Model

In this work, we use Pitcher’s two-runners model (Pitcher 2009) and the single-runner
model of Aftalion and Bonnans (2014) to build a new model for two runners, which
incorporate psychological factors.

In order to simplify the notation, we substitute the expression o (¢;; Omax,i» Of,i»
Or.i> @i, €cr,i) from (5) with o;(e;). We recall that the friction in Pitcher’s paper is
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—cvl.2 (1 — ye""("Diﬂ)z) and is supposed to model the slipstream. Shielding behind

someone has a strong impact when there is wind or when the velocity is high, however
in real races this position does not come entirely from slipstream but from strategic
factors, too, for which the position 1 m behind is the best. Therefore, the potential
1- ye_"‘("Diﬂ)2 can also be considered to model a psychological factor which consists
in trying to follow one’s competitor, in order to be able to overtake. Indeed, it is a
potential which has a minimum at distance B behind and decreases global friction.
On the other hand, when the other runner is too far, there is no benefit. Let us observe
that this model does not take into account the lateral displacement, and therefore the
additional propulsive force, that is necessary to overtake. One can model the fact
that overtaking requires some additional energy, by possibly using a non-symmetric
potential well 1 — ye_“(xDiﬁ)z, with a varying o, which is not what we have done in
the simulations presented to reduce the number of parameters involved. We obtain the
following equations: fori = 1,2

')‘61 = x1(0)=0
*p=v2—vi xp(0) = 0
vi=fi-2—cf(1—y (e 7)) w© =0 (10)
= fom 2 -} (1-y () 5(0) =0
¢ = oi(e;) +ni (Vi) — fivi e (0) = e

The Eq. (10) are defined for ¢ € (0, T'), where T is the time at which the first of the two
runners reaches the final distance Dj; to model this, it is necessary to add the following
boundary condition to the system:

1 (T) = D)(x2(T) — D) = 0. (11)
As in the previous models, the energy has a lower bound:
ei(t)>0 Vte(0,7),i=1,2. (12)

The choice of the cost functional, i.e. the quantity to be minimized, is a key point.
As said before, in contrast with Pitcher’s choice, in this case none of the strategies is
fixed, therefore there are two controls: f1(¢) and f>(¢). Here, we propose to minimize
the following quantity, given a proper constant weight ¢y, > 0:

J(f1. f2) =T + cwlxp(T)]. 13)

The aim of this choice is to minimize the final time of the winner, and the term
cwl|xp(T)| models the fact that the loser has tried to win as well. Different values of
cw can lead to different results, as in real races when two runners compete against
each other multiple times the outcome of the race can change.
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The resulting problem is:

min J s.t. (10)—(11)—(12), (14)
fi€Si

where §; is the set of the admissible controls, and depends on the athlete. For physio-
logical reasons, it is necessary to impose a bound to the variations of £, in addition to
the bounds on f already introduced, related to the fact that athletes cannot vary their
propulsive force too quickly (see more details in Aftalion and Bonnans 2014). This
leads to the following definition of §;:

Fi={f:0< £ < fumi. I/ O] < Ki Vi € 0. T}, (15)

where K; and fy,; are constants depending on the athlete, which model the fact that
every runner has a limited maximal force (fy ;) and cannot vary it too quickly (K;).
The rest of the paper consists in providing numerical simulations of (14).

3 Numerical Results

All the results presented in this section are obtained with the free software BOCOP
Bonnans et al. (2014). The equations are solved with a finite difference scheme
(implicit Euler), while the optimization problem is solved with an iterative method,
using as stopping criterion the difference between successive iterates, with a tolerance
of 10710,

The aim of these simulations is to find out if a runner can win a race against someone
stronger, by running behind the first part of the race, and to quantify in term of variation
of some parameters how much weaker they can be and when the best time to overtake
is.

The single-runner strategy has been mathematically proven and numerically com-
puted in (Aftalion and Bonnans 2014), and found experimentally in (Hanon et al.
2008), and it consists in three parts:

e a first part of maximal force with a strong acceleration during which the peak
velocity is achieved,

e a second part in which the propulsive force first decreases smoothly and then
increases again, with the corresponding decrease and increase in the velocity,

e a final part at maximal force and maximal velocity again, until zero energy level
is reached, where the velocity drops.

From the two-runners model, we expect an overall similar strategy: however, the
additional term in the velocities equations encourages one of the runners to start
slightly slower and to position themselves at distance 8 from the other. This allows
them to keep the same velocity as the other runner while using a smaller propulsive
force, which, in turn, leads to a lower energy consumption. We expect that, at a certain
point during the race, the runner who is behind, will overtake the other by using
the energy they have saved throughout the race and will be able to perform a longer
final sprint. Moreover, it is reasonable to think that this moment occurs sooner if the
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Table 1 Parameters values for

1500m Parameter Unit of measurement Value
T S 1.33
¢ m~! 0.0028
el kg 1400
or m? / $3 6
Omax m?/s3 2422
of m?/s3 20.44
1) 0.5
ecr - 0.3
cy S 4
o m~2 10

m 1

y - 0.8
M N/kg 5
Cw - 0.1

runner who runs the first part of the race behind is stronger. Let us observe that this
running strategy could also lead, in some favourable situations, to an improvement of
the personal record. Nonetheless, it is important to underline that the decrease in the
final time is not the main goal for a runner in some occasions, such as the Olympic
finals, in which the final position is definitely more important than the final time: in
Thiel et al. (2012), study, starting from the Beijing 2008 Olympic games data and the
world records data, how the difference in the goal affects the pacing strategies: win
the race versus minimizing the final time.

How to estimate the parameters values starting from arace is beyond the scope of this
paper. For this reason, the reference values for the parameters used in the simulations
are taken from the literature and reported in Table 1. The initial, maximal and final
value of sigma (respectively, oy, omax and or) are taken from the \702 values reported in
Hanon et al. (2008): let us observe that these values are given in ml kg_1 min~!. Inorder
to convert them in the unity of measurement needed (i.e. ms 3 =17 kg_1 s_l), we
consider that the uptake of 1 ml of oxygen is often converted into an energy expenditure
estimate of 211J. It is then necessary to convert the minutes in seconds, obtaining in
this way the conversion factor 21/60. The values chosen for ¢ and e, aim at fitting
the , profile reported in Fig. 2 of Hanon et al. (2008). The values for fy; and t are
strongly related: in fact, a first-order approximation of the maximal velocity vpeax a
runner can reach is 7 fy. Therefore, starting from the velocity profile plotted in Fig. 1
of Hanon et al. (2008), one can chose a couple of reasonable values. The value of the
constant ¢ is taken from Quinn (2004), ¢, from Aftalion and Bonnans (2014), o and
B from Pitcher (2009) and, finally, y from Pugh (1971).

First of all, let us consider the perfectly symmetric situation, in which the two
runners have the same parameters. In this case, it is very influential which runner
is running the first part of the race behind: this can be mathematically modelled by
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Fig. 3 Competition between two runners with the same parameters

choosing, in a proper way, the initial guess for the variable xp given to the iterative
method that solves the optimization problem. In fact, giving as initial guess 8 (or —f)
forces runner-1 (or runner-2) to start the race more slowly and to position themselves
behind for the first part. If one gives as initial guess xp = 0, one finds a solution in
which the runners overtake each other multiple times, which is not very realistic. The
non-uniqueness of the solution is not surprising, especially in a perfectly symmetric
situation, such as the one considered: if a certain couple of strategies { f1(¢), f2(¢)}
provides a minimum for the cost functional, the couple { f2(¢), fi(¢)} provides a min-
imum, too. This can be considered to model the fact that if the same two runners run
against each other multiple times, the outcome of the race can change. The results
of this simulation are shown in Figs. 3 and 4: one can observe that the runner who
stays behind can keep the same velocity as the other runner, while using a significantly
lower propulsive force and therefore having a much lower energy consumption. All
the graphs in Fig. 3 have the position on the x-axis, which means that the velocity
of runner-i is plotted with respect to the position of runner-i (and it is the same for
the propulsive force, the energy and sigma). The choice of plotting with respect to
position, and not time, has been made because it is the most common in the sports
literature. Figure 4 shows the distance between the runners: the overtaking occurs at
about 94% of the race, corresponding to 1416 m. This variable is plotted with respect
to a normalized time (i.e. / T'), because it does not concern only one runner, but both
of them, therefore it does not make sense to plot it with respect to the position of any
of them.

From this first result, it is clear that running behind someone for the most part of
the race allows runners to win against athletes as strong as themselves. We now want
to investigate how the strategy of runners changes if they are running alone or behind
someone else. In Fig. 5, two performances of the same runner are compared: the blue
line represents the optimal strategy of the runner running alone (they complete the
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Fig. 4 Competition between two runners with the same parameters; distance between the runners
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Fig. 5 Running alone versus running behind

race in 249.681s), the red line represents the strategy adopted when running behind
someone as strong as themselves (they completes the race in 247.822 s). This difference
in the final time (almost 2s of improvement) is equivalent to a difference of about
0.05m/s in the mean velocity.

However, what we have simulated is not the most favourable situation to reduce
the final time, and therefore to improve the mean velocity. If the aim is exclusively
to improve the personal best performance and not to win the race, the best scenario
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Fig. 6 Competition between two runners with the same parameters, with the recreation term 7

possible for a runner is to run behind someone slightly stronger for the whole race.
However, let us observe that the opponent must not be too much stronger: in this case,
the runner would use too much energy to stay behind and would soon reach the zero
energy level, which would cause a drop in the propulsive force too soon in the race.
Nevertheless, from Fig. 5 we can still observe how running behind someone else allows
an athlete to have a higher velocity in spite of keeping a smaller force throughout the
race.

The results presented in Figs. 3, 4 and 5 are obtained with the model (10) without the
recreational term 7 introduced in (6). In Figs. 6 and 7 we present the same scenario, but
with recreation: the two runners have the same parameters. We recall that, as explained
in Sect. 1.1, the recreational term 7 leads to oscillations in the velocity profile. One
can observe, comparing Fig. 3 with Fig. 6 and Fig. 4 with Fig. 7, that the strategy does
not change: runner-2 slows down at the beginning, in order to be behind runner-1;
in the middle part of the race the propulsive forces are oscillating (this behaviour is
caused by the additional term 7 and can be found also in the single-runner problem, see
Aftalion and Bonnans (2014) for further details), and the mean value around which the
propulsive force of runner-1 is oscillating is slightly bigger than the one around which
the force of runner-2 is oscillating; the energy curve does not change significantly,
compared to the previous results. From Fig. 7, one can notice that runner-2 overtakes
at about 94.85% of the race, which corresponds to 1417 m: 1 m later, if compared with
the case without oscillations. Let us observe that in this case the final time is smaller:
in fact runner-2 completes the race in 247.75s. This decrease in the final time, when
adding the recreation 7, is consistent with the results for the single-runner problem
presented in (Aftalion and Bonnans 2014).

Finally, we can say that the recreation term does not change the strategy of the race,
however the results are more difficult to read, due to the oscillations. For this reason,
from now on we will present only results obtained without 7.
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xplm]
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Fig. 7 Competition between two runners with the same parameters, with the recreation term #; distance
between the runners

We now want to find the threshold values, i.e. how much runners can be weaker
than their opponent and still win the race by running behind. Therefore, we vary one
parameter at a time, making runner-2 weaker. Figures 8 and 9 show the results for two
runners who have a different initial energy. Given the reference value for e(l) = 1400
(as in Table 1), the lowest initial energy runner-2 can have, while still being able to
win the race, is:

) = 1275J/kg.

At the beginning of the race, runner-2 slows down in order to stay behind: in this way
runner-2 manages to keep the same velocity as runner-1 using a smaller force; this
leads to a smaller energy consumption, therefore at the end of the race runner-2 has
enough energy to speed up and overtake runner-1. For the boundary condition (11),
the time stops as soon as the first runner finishes the race. Therefore, when runner-2
reaches the finish line (i.e. 1500 m), runner-1 has covered only 1498.13 m. The final
time of runner-2 is 249.43 s, while their best performance running alone is 251.403s,
again an improvement of almost 2s. As shown in Fig. 9, the overtaking occurs later
in the race, if compared with the case in which the runners were equally strong: here
occurs at 99% of the race (i.e. about 1487 m). This is reasonable: in fact, being weaker,
runner-2 has to exploit the advantage of staying behind as long as possible.

In Figs. 10 and 11, the two runners have different oxygen uptake. The threshold
values are the following:

Omax.1 = 24.22m%/s, o =20.44m?/s’

Omax2 = 23.75m? /s>, or, = 20.18 m?/s>.
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0.9

The initial strategy is the same as the previous case: runner-2 slows down in order
to stay behind; this allows them to keep the same velocity as runner-1 using a smaller
force and therefore compensating the smaller o. The speed up in the final part is less
evident than it was in the previous case, because the difference between the energies is
smaller. The final distance covered by runner-1 in this case is 1499.72 m. The final time
of runner-2 is 249.665s, compared to 251.665 s if running alone. Figure 11 shows the
distance between the runners during the race: as in the previous case, the overtaking
occurs late in the race.
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Figures 12 and 13 show the results for two runners who have a different value for
7. The threshold values are:

71 = 1.33s 170, =1.31s.
A smaller 7 indicates a bigger drop in velocity due to frictional effects, therefore, a

greater force is necessary to keep the same velocity. Being behind another runner is a
way to compensate this weakness: as shown in Fig. 12, runner-2 manages to keep the
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same velocity as runner-1, using a slightly smaller force, in spite of having a smaller
7. In the final part, when the difference in the energies is sufficiently big, runner-2
overtakes runner-1. In this case, at the end of the race, runner-1 has covered a distance
of 1498.82m. The final time of runner-2 is 249.536s, while their best performance
running alone is 251.83s, i.e. they have an improvement of more than 2s.

Finally, let us consider a case in which the runner who starts behind is stronger. For
this purpose, we use the following parameters:

71 = 1.29s ) = 1.33s.
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All the other parameters remain unvaried (reference values from Table 1). Figures 14
and 15 show the results obtained: in this case, the difference between the athletes is
much bigger than in the previous ones, and this is evident from all the curves in Fig. 14.
From Fig. 15, one can notice that the overtaking occurs very early in the race: at about
87.1%, i.e. 1290 m. What is interesting in this case is that runner-2 completes the
race in 248.726 s, which is almost 1 s less than their best performance running alone:
therefore, in order to improve a personal record, it is not necessary to run behind
someone stronger.

Let us now compare the results obtained here with Pitcher’s ones. In Pitcher (2009),
Fig. 5.2, when the weaker runner is the one with the fixed strategy, the stronger runner
remains only slightly ahead of their opponent until nearly the end of the race. This is in
order that the weaker runner does not gain the advantage of running in the slipstream
of the stronger for a long part of the race. However, it is the runner who stays behind
who should adjust their position with respect to the other one, and not the opposite.
The advantage of having two strategies free allow us to avoid this unrealistic result,
and in this case, we get that the weaker runner stays 1 m behind, and either wins the
race if the difference in energy is not too big or drops following if they do not have
enough energy.

Finally, we want to analyse the strategy and to see when the overtaking occurs in
real races and compare them with our results. For this purpose, we have considered
the men’s 1500 m finals of three different competitions: Beijing 2008 Olympic games,
Rome 2014 TAAF Diamond League and Singapore 2015 SEA Games. Videos of the
races can be found on the internet (YouTube Channel 2008, 2014, 2015). We want to
point out that the athlete who won the Beijing 2008 Olympics was disqualified 1 year
later for doping and his gold medal was reassigned. Nonetheless, it is still interesting
to analyse the race, knowing that doping increases the maximal value of o but delays
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the time at which the peak velocity is reached: this should lead to a slower start, but
it provides a capacity to keep a higher velocity for a longer part of the race. From the
three videos (YouTube Channel 2008, 2014, 2015), one can observe that the winner
always runs the first part of the race behind, and this is consistent with our numerical
results. The overtaking occurs at 84.6% of the race in Beijing 2008, at 96.9% in Rome
2014 and at 91.8% in Singapore 2015: these values are close to our numerical results,
that vary between 87 and 99% of the race depending on the difference between the
athletes.

4 Conclusion

In this work, we have presented a new model for a two-runners problem, starting from
the single-runner model of Aftalion and Bonnans (2014) and from the two-runners
model of Pitcher (2009), changing the optimal control problem. The key of our simula-
tions is that they quantify very precisely in terms of physiological parameters, optimal
control problems and numerical simulations, phenomena which are only qualitatively
understood. In this paper, we do not take into account the curvature of the track, which
is the aim of an upcoming paper, since it requires more effort in the modelling.

As expected, going from one runner to two runners does not change the main
characteristics of the velocity profile individuated already in (Aftalion and Bonnans
2014). We can still clearly distinguish the different phases of the race: the fast start, with
maximal propulsive force and strong acceleration until the peak velocity is reached;
an intermediate phase in which the propulsive force and the velocity first smoothly
decrease and then increase; a final part at maximal force again, where the runner
speeds up (final sprint), followed by a very short zero energy arc, in which there is a
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drop in force and velocity. Running behind someone allows to keep a velocity with
a smaller propulsive force than the one needed when running alone; this leads to a
smaller energy consumption, therefore the zero energy level occurs later and the speed
up at the end of the race is more pronounced.

Our numerical results show that if a runner has a fast start and leads the race
for the most part, even if they are slightly stronger than their opponent, at the end
they are overtaken: in order to lead the race and win, the physiological difference
between the athletes has to be significant. Furthermore, we have shown how runners can
improve their personal best performance by exploiting the advantage of running behind
someone else, who can be stronger or weaker. The most significant improvements are
obtained by running behind someone stronger.

An interesting development, in order to have more realistic results, would be to
include a delayed reaction term which takes into account the fact that runners cannot
adapt instantaneously their strategy to changes in their competitor’s strategy. This
could be compared to a stochastic model. Finally, one could increase the number of
runners, in order to be able to model real races more accurately. These considerations
are outside the scope of this paper, but they can be important for future research.

This model suggests to use special runners to set the pace for others and help improve
their racing times in training. The other major application for Olympic training could
be for athletes to estimate whether they should stay behind or lead, and when, given
their physiology, and that of their opponents, is the best time to overtake.
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