Downloaded 12/10/18 to 134.157.3.184. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. Sc1. COMPUT. (© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. A3955-A3981

SENSITIVITY ANALYSIS AND NUMERICAL DIFFUSION EFFECTS
FOR HYPERBOLIC PDE SYSTEMS WITH DISCONTINUOUS
SOLUTIONS. THE CASE OF BAROTROPIC EULER EQUATIONS
IN LAGRANGIAN COORDINATES*

C. CHALONST, R. DUVIGNEAU%, AND C. FIORINI'

Abstract. Sensitivity analysis (SA) is the study of how the output of a mathematical model is
affected by changes in the inputs. SA is widely studied, due to its many applications: uncertainty
quantification, quick evaluation of close solutions, and optimization, to name but a few. In this
work we show that the classic SA techniques, in particular the continuous sensitivity equation (CSE)
method, cannot be used if the mathematical model is a system of hyperbolic partial differential
equations (PDEs) with discontinuous solutions. The problem arises from the fact that the CSE
method requires the differentiation of the state variable: if the latter is discontinuous, this in turn
generates Dirac delta functions in the sensitivity. The focus of the first part of this work is to define
a system of sensitivity equations valid also in case of discontinuous state: in order to do that, we
add a correction term based on the Rankine-Hugoniot conditions. In the second part of this work
we illustrate with some numerical tests how some classical finite volume schemes (an exact Godunov
method and a Roe-type method) do not converge to the analytical solution for the sensitivity, due to
the numerical diffusion: for this reason, we present an antidiffusive numerical scheme, which provides
the correct results for the sensitivity. In this work we carry out the computation in detail for the
barotropic Euler equations in Lagrangian coordinates, but the approach is general and can be applied
to any hyperbolic system with discontinuous solutions.

Key words. sensitivity analysis, Euler equations, numerical diffusion, hyperbolic PDEs, Roe
method, Godunov method

AMS subject classifications. 35L60, 65M08, 49Q12

DOI. 10.1137/17M1140807

1. Introduction. Sensitivity analysis (SA) concerns the quantification of
changes in partial differential equations (PDEs) solution due to perturbations in the
model input. It is obviously a valuable tool for engineering applications, which allows
us to quantify the physical response of a system to any change of parameter values
(geometry, boundary conditions, etc). The underlying concepts have been used for a
long time in optimal design methods, which replace now the traditional “trials and
errors” approach, to determine rigorously the optimal parameters of a system. Beside
optimization, SA methods can also be carried out to measure the performance loss due
to an unexpected perturbation of the operational conditions, in the framework of un-
certainty quantification approaches. Finally, SA methods can likewise be employed to
monitor and explore interactively neighboring solutions for a negligible computational
expense.

Two strategies can be implemented to compute such sensitivities. The first
and most popular one is the adjoint equation method [15, 19, 20], which introduces
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additional adjoint variables to compute the derivative of any functional output with
respect to all input parameters. The adjoint equation is independent from the input
parameters, yielding this approach very efficient for optimization problems involving
a large number of design parameters. However, the adjoint equation should be solved
backwards in time, which could lead to practical difficulties for unsteady problems.
The second strategy is the sensitivity equation method [2, 8, 7, 14], which allows us
to compute the derivative of the PDE solution itself, at any location and time, with
respect to a single input parameter. This approach is therefore better suited to the
exploration of neighboring solutions. Note that it relies on a forward time integra-
tion and, thus, seems to be well adapted to time-dependent hyperbolic PDE systems,
which constitute the context of the present work.

However, a major difficulty arises when one considers the application of the sensi-
tivity equation method to hyperbolic PDE systems: in such a context, discontinuities
in the solution can appear, even if the initial solution is regular. This corresponds to
the generation of shock waves in compressible flows for instance. Such discontinuities
in the solution lead to specific issues regarding sensitivity analysis, because they cor-
respond to the presence of Dirac functions in the sensitivity fields. This question has
been explored in [1, 19] with a theoretical viewpoint, and more recently in [10, 11]
with a numerical viewpoint. Indeed, the capture of the Dirac peak in the sensitivity
solution by numerical schemes is intractable in practice. Therefore, a modification
of the sensitivity system was proposed in the later references to remove the Dirac
functions from the numerical sensitivity solution. More specifically, a modification of
Harten, Lax, and van Leer Riemann solver used to evaluate fluxes in a finite-volume
method was proposed, in the context of Saint—Venant equations.

In this work, we adopt a similar point of view: we propose to define and approx-
imate numerically a modified system of sensitivity equations which is valid also when
the state is discontinuous. To correct some shortcomings appearing in the sensitivity
solution, reported in [10, 11], some alternative formulations to define the sensitivity
solution update are studied, ranging from Godunov method, first- and second-order
Roe-type solvers, to an “antidiffusive” scheme. These methods are tested numerically
in the context of the barotropic Euler equations in Lagrangian coordinates, but the
proposed formulations are general and could be used for other hyperbolic systems of
conservation laws.

This article is organized as follows: in the first sections, we present the state
equations, derive the sensitivity equations and the modification of the sensitivity
equations to account for the Dirac functions. Then, we detail the exact resolution of
the Riemann problem for the state and sensitivities. In section 5 the implementation
of two classical methods (Godunov and Roe-type solvers) is examined and some nu-
merical tests are conducted, which exhibit grid-convergence issues. For this reason,
an “antidiffusive” scheme is introduced in section 6 to alleviate these difficulties and
the accuracy of the proposed approach is demonstrated for some cases. Finally, we
present an application to uncertainty quantification and we compare the SA results
with the Monte Carlo method.

2. Problem description. As already mentioned in the previous section, stan-

dard SA methods can be used only if the solution U is regular enough [1], which is
usually not the case for hyperbolic systems of the general form

U+ 0,F(U)=0, zeR, ¢>0,
U(z,0) = Up(x).
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In fact, it is well known this kind of systems can have discontinuous solutions, regard-
less of the regularity of the initial condition Uy. If the state U is discontinuous, the
sensitivity U, = 0,U will exhibit Dirac delta functions. Here and throughout this
work, a denotes the parameter of interest which may vary and induce a nontrivial
sensitivity. We remark that we consider a scalar parameter a only to simplify the
notation: everything we do in this work can be done for a vector of parameters a as
well, with no added complexity from a theoretical point of view.

In this work, we consider the barotropic Euler equations in Lagrangian coor-
dinates, i.e., the p-system; however, everything can be extended to any hyperbolic
system. The choice of the p-system is motivated by the fact that, although quite
simple, it presents all the main features of hyperbolic systems: this allows us to solve
the state problem easily and to focus on the sensitivity problem.

The system writes,

(1) {6t7'—(‘9;L.u=O7

dyu+ Oap(1) =0,

where 7 > 0 is the covolume (i.e., 7 = %, and p is the density of the fluid), u is

the Lagrangian velocity and the pressure p(7) is a function only of 7. We assume
p'(1) < 0 and p”(r) > 0. The Jacobian matrix of the system is

® Mo = |y o |

and its eigenvalues are real and distinct A = +¢, where ¢ = /—p/(7) is the Lag-
rangian sound speed. Therefore M is R-diagonalizable, and (1) is strictly hyperbolic.
In this work we will consider p(7) = 7=7, where v = 1.4 is the heat capacity ratio.

If we consider smooth solutions of (1), we can apply the CSE method, differentiate
(1) with respect to a, and obtain the following sensitivity equations:

{atTa — OzUtq = 0,

®) Orta + 0, (9! ()72) = 0.

In order to introduce a more compact notation, we define the state and sensitivity
vectors and their fluxes

L A 1 R e O A R YCR AR el

and rewrite the systems (1) and (3) in a vectorial form:
0,U, + 0,F,(U,U,) =0.
The Jacobian matrix of the global system (4) writes,

0 -1 0 0

0G| p(7) 0 0 0 . | U | F
A(V)—W— 0 0 0 _1 with V = Ua 7G— Fa .
p'(T)r7e 0 P(7) O

One can remark that A(V) is a lower triangular block matrix whose diagonal
blocks are identical to each other and to the state system’s Jacobian matrix. We ob-
serve that the global system (4) has two repeated eigenvalues, the same Ay as the
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original system (1), and that the matrix A(V) is not R-diagonalizable as soon as
Ta 7 0. This means that the global system (4) is only weakly hyperbolic. Therefore,
the system (4) as it is will provide us, in case of discontinuous state U, with a sensitiv-
ity U, presenting Dirac delta functions, in addition to the usual discontinuity, so that
these solutions have to be interpreted in the sense of measures. We refer, for instance,
the reader to the following papers, and the references therein: [4, 6, 9, 16, 17, 22].
However, sensitivities with Dirac delta functions are unusable for many applications:
since a Dirac delta function cannot be seized numerically, the spike in the numerical
solution mimicking it is spread over multiple cells, leading to a corrupt solution in the
neighborhood of the shock. For this reason, we add a correction term to the sensitivity
equations, as done in [10]. The definition of a proper correction term is the subject
of the next section.

3. Source term. In this section, we aim at proposing a new version of (4) which
is also valid for discontinuous solutions of the state variable U. Recall indeed that
(4) has been derived assuming formally that the solution is smooth whilst hyperbolic
equations are well known to develop discontinuities in finite time even for smooth
initial data U(x,t = 0) = Ug(z). In order to compensate the Dirac delta functions
that appear in the solutions U, of (4) when U is discontinuous, we add to (3) a source
term S of the following form:

N
o) s =3 .
k=1

where N, is the number of discontinuities in the state solution U, py, is the amplitude of
the kth correction (to be computed), and dy, is the Dirac delta function 0, = 6(z—xs k),
where x, ;; is the position of the kth discontinuity. The new version of (4) we are going
to consider thus writes,

©) {atU +8,F(U) =0,

U, + 0,F,(U,U,) =S.

Let us motivate our choice and define pi by considering a control volume (x1,xs) X
(t1,t2) as in Figure 1, which contains only the kth discontinuity, propagating at
speed 0. We integrate the second equation of (6) over the control volume,

o to T2 to
/ / U, + 0, F,(U,U,)dadt = / / 0z — x5 1) pr (t)dzdt,
x1 t1 1 ty

and we obtain
To to to
(7) / U, (z,t2) — Ug(x, ty)de —|—/ Fo(xo,t) — Fo(ay,t)dt = / pr(t)dt,
Tl ty t1

where we used the simplified notation F,(z,t) = F,(U(x,t), Uy (z,t)). We divide (7)
by (t2 — t1), and as the size of the control volume tends to zero we have

(8) pr(t) = (U, — U)o, +Ff —F,,

where the plus (respectively, minus) stands for the value of the variables to the right
(respectively, left) of the discontinuity. The relation (8) gives a natural meaning of
Py in terms of a defect measure of the Rankine-Hugoniot conditions for (3). Now, we
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want to define p;, so that the new model with the source term is valid also in the case
of discontinuous state. We start from the Rankine-Hugoniot conditions for the state
variable U across a discontinuity,

(U -UMop =F —Ft,

and we suggest to differentiate them with respect to the parameter a. As we do that,
we should consider the fact that the Rankine-Hugoniot conditions are valid only at
the discontinuity location zy 4(¢), which depends on the parameter a. Therefore, we
obtain

(U, = UNop + (U™ = UN0,01 + 0 (VU — VU ),z (1)
OF(U™) OF(U™)

=F, -F/ + <VU+ -

8U 8U VU ) aal'k,s (t)

The terms depending on J,z s(t) are very difficult to estimate. However we remark
that, thanks to the presence of the gradients, they are zero if we consider that the
solution U is constant in the left and right neighborhoods of the shock. This is
verified in a standard first order finite volume approach. We obtain therefore a simpler
formula:

(9) (U, —UNop+ (U —=UNop,=F, —FF
with oy, = 040%. Comparing the latter with (8), one is thus led to set
(10) pr(t) = ok,a(UT —U7).

Our choice is of course valid for each k-discontinuity of the state solution, leading us
to definition (5) where the sum is taken over the number of discontinuities.

ok

t2 N "
§ 1
I 1
! / |
t, — 1

T

T1 xk,s(tl) T2

Fic. 1. Control volume in light blue, xy, (t) is the position of the kth discontinuity at time t.

Note also that by construction, if a triple (U_,U+,U) is associated with an
admissible discontinuity with a left (respectively, right) state U™ (respectively, U™)
and ¢ is the speed of propagation, then the triple (U, , U/, o) with U, = 9,U~ and
U = 0,U" is also admissible in the sense that it satisfies the generalized Rankine-
Hugoniot relations imposed by S. In other words, the sensitivity solution of (6) is
obtained by differentiating the state solution with respect to a when the solution is
smooth or discontinuous with constant left and right states. As far as the initial
condition is concerned, we have

(D=0 = (o).
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4. Exact solution of the Riemann problem. In this section, we present the
exact resolution of the Riemann problem for the state and the sensitivity, associated
with the initial data:

Uy, z<ux,
Ugr x>z,

U, z <

U(x,O) = { Ua(ZL',O) = {

U,r >z,

for a given x.. First, we compute the solution of the state system (1), which is well-
known but necessary to solve (4). Then we derive it with respect to the parameter of
interest a to obtain the sensitivity. As we will see, the sensitivity exhibits interesting
and nontrivial behaviors.

4.1. The state variable. We recall that the eigenvalues of the Jacobian matrix
of the state system are

AM(U)=—y/=p'(1) and X(U) =+/—p/'(7),

and the eigenvectors

2/ ) /)

O o I AN o

1 (U) - 2p,(7_> d Q(U) ~ 2])/(7') ’
p'(7) p"(7)

which are chosen in such a way that VA; - r; = 1. Since the couples (\;,r;) are both
genuinely nonlinear, the waves associated can be either shocks or rarefaction waves.
The structure of the analytical solution of the state is resumed in Figure 2 and it
consists of two waves, whose speeds can be computed exactly.

4 4
T T Te T
(a) 1-shock—2-shock. (b) 1-shock-2-rarefaction
4 4
T T
Te T Te T
(¢) 1-rarefaction—2-shock. (d) 1-rarefaction—2-rarefaction.

Fic. 2. Configurations for the state variable U.
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In order to give more details on this structure, which will be necessary to explain
the structure of the sensitivity, let us consider the plane (7, ) and the points U, and
Ug: starting from U}, we need to reach Ug passing from an intermediate state U*
using shocks and rarefaction waves; see Figure 2 for the notations. First, we compute
which points U are reachable through a shock of speed o from Uyp. Across a shock,
the Rankine-Hugoniot conditions are valid; therefore

(11) {—u+uL =o(r —711),

p(t) —p(r) = o(u —ur).
Finding o from the first equation and replacing it in the second one, one has
(u—up)? = —(p(7) = p(r1))(7 — 71),

and we observe that the right-hand side is always positive because p’(7) < 0; therefore

(12) u=ug £/~ (p(r) = p()(7 —71).
In order to chose the sign in (12), we use the Lax conditions
/\1(U) <o< /\1(-|JL)7

which implies that o is negative (because \; is negative), and

V(1) < V() =7 <7,

where we used the hypothesis p”(7) > 0. Both ¢ and (7 — 71,) are negative, therefore
their product is positive and from the first equation of (11) we can say that uy > w.
We can conclude that the sign in (12) is a minus and therefore the points reachable
from Uy, through a shock are on the curve of equation

(13) u=ug —/~(p(r) = p(r) (7 —71).

Repeating everything for the 2-wave one finds that the states U reachable from Ug
through a shock are those on the curve of equation

(14) u=ug +v/~@(7) = p(tR))(T — Tr) "

We now repeat the same procedure to compute the set of points reachable through
a rarefaction wave from Uy and from Ug as we did for the shock.

The self-similar solution £ — U;(&) in a l-rarefaction wave starting from Up,
respects the equation

(15) UL () = 11 (T1(9)),
U (%) =U,

with & = A1 (U(&)) for all &, which gives the following system:

H(e) = 2p‘f()) F1(€0) = 71,
(16) ~ 2p/(7-1) ~
wy(§) = — (7))’ (&) = ur.
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The first equation can be rewritten as

and its solution is p/(7;) = —£2; therefore,
fi = () (=€)
After a change of variable, the second equation is

duy

dr

=0 (71);

hence, one has the curve of points reachable through a 1-rarefaction starting from Uy, :

T1
le:uL—i—/ \ =p'(T)dr.
L

If p(t) = 777, one would find
1
N 2 v+ B 2 1—y
(17) 7_1:<(xjxc)2> 5 Uy _UL+£( TL2 )

Repeating exactly the same, one can find the points reachable through a
2-rarefaction starting from Ug,

TR
ﬂgzuR+/ \ =p'(7) dr;

hence for our choice of p,

1
2.7 1—~y = _ +2 F+1
(18) ug—uR-i—il_fY (TR2 — Ty >7 To = (( il )2> .

T — T,

Finally, in order to compute U* we define the two following 1- and 2-wave curves:

L—\/ T — T )(T—TL) if 7 <7,

(19) g1(r;UL) = 5
uL—|— (7'T —TL ) if 7> 71yp,
ugp +/ (7" =15 ") (T — T | if 7 < 7g,
(20) g2(T;UR) = f ;/ ( 1y Rlzs ») f
UR+£(TR2 —772) if 7> 7R,

which are smooth functions whose derivatives with respect to 7 will be denoted gj.
The intermediate state 7* is defined as the intersection between ¢g; and gs, and one
has u* = g1 (7*; Ur) = g2(7*; Ur). Newton’s method can be used to compute 7*. We
remark that there is no intersection between g; and g under the following condition:
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4.2. The sensitivity variable. As already explained, to compute the sensitiv-
ity we differentiate with respect to a the state solution; this means that the initial
data for the state and the sensitivity are linked by the following relation:

au;,  oup
Oa Uar = Oa

Furthermore, the sensitivity has the same two-wave structure as the state, and the
waves travel at the same speed as for the state. Therefore, we need to compute
the derivative of U* and U, and this concludes the computation of the analytical
sensitivity. To compute 7 and v}, we differentiate, with respect to a, the equality

91(7";UL) = g2(7"; Up),

and we obtain (recall that Uy, = (r1,ur)? and Ug = (7g,ugr)?)

Ua,L =

uy = ¢4 (r5UL)7y + 782 (7" UL)Ta, + %(T ;UL )a,L
dgo 092

— / *, U * *, U " *, U o ,

92(T ) R)Ta + 87’3 (T ’ R)T R + 87.LR (T ’ R)U’ R

which gives an explicit solution (although dependent on U™*) for 7.\

= OTR OJur oTr, dur,

‘ 91(7%;U) = ¢5(r*; Ur)

992 (x, URr)Ta,r + 992 (rx, URg)ta,r — D1 (7%, UL)Tar — 991 (r+, Upr)ua,r

Finally, we differentiate the state solution in the rarefaction U given by (17)-(18).

4.3. Examples. In the numerical section of this work, we will consider as pa-
rameter of interest the initial data, which means that a can either be 7, ur, Tr, ug,
or a combination of them, and from (17) and (18) one can observe that 7; does not
depend on those parameters; therefore,

- o7 .
Taﬂ;:aiazzo 221,2.

Concerning the sensitivity of the velocity, one obtains

~ 0ty ity il .

Uq,1 = da = Uq,L — \/’TTL 2 Ta,L> Uq,2 = da = Uq,R + WTR 2 Ta,R-

Interestingly, we remark that the sensitivity is constant in the rarefaction zone of the
state variable, which means that for the sensitivity this zone corresponds to at most
two discontinuities propagating with velocities given by the extreme left and right
velocities of the rarefaction in the state variable; see Figure 3. This simplification
is due to the fact that we are considering a reduced Euler system, under barotropic
conditions (cf. [12]). In particular, there are two cases:

(i) if the state presents a l-rarefaction (respectively, a 2-rarefaction) and the
parameter of interest a is 77, (respectively, 7g), the wave associated with the
rarefaction in the sensitivity splits in two discontinuities, as explained above
(cf. Figure 4).

(ii) if the parameter of interest is uy (or ug) we have g1 = Uq,r, and g2 =
Uq R, therefore the wave associated with the rarefaction becomes a single
discontinuity for the sensitivity, traveling at the more internal velocity of the
state rarefaction wave (cf. Figure 5).
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t
i
t
T
(¢) 1-rarefaction—2-shock. (d) 1-rarefaction—2-rarefaction.
Fi1G. 3. Corresponding configurations for the sensitivity U, .
t
Te x Te x
(a) Corresponding configuration to state (b) Corresponding configuration to state
case (b) in Figure 2 if a = TR. case (c) in Figure 2 if a = 7.
t t

T
Te T
(c) Corresponding configuration to state (d) Corresponding configuration to state

case (d) in Figure 2 if a = 7. case (d) in Figure 2 if a = TR.

F1G. 4. Corresponding configurations for the sensitivity U,, ezample (i).
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t t

U,

Ua,L Ua,R
T T

Te T Te T
(a) Corresponding configuration to state (b) Corresponding configuration to state
case (a) in Figure 2 if a = up, or a = upR. case (b) in Figure 2 if a = uy, or a = ug.
t t

T T T

(¢) Corresponding configuration to state (d) Corresponding configuration to state
case (c) in Figure 2 if a = up, or a = ug. case (d) in Figure 2 if a = ur, or a = uR.

F1G. 5. Corresponding configurations for the sensitivity Ug, example (ii).

5. Classical numerical schemes. The aim of this section is to design relevant
numerical schemes for (6). As we will see, this task is not easy and requires a nice
discretization of S in order to avoid Dirac delta functions, and it is necessary to control
numerical diffusion across the shocks where this term is active. Only under these
conditions we will get a perfect agreement between exact and numerical solutions.
Let us first introduce our notation, although quite classical: we use a constant space
step Az and a varying time step At". The mesh interfaces are denoted x;;/, = jAx,
the cells Cj = [1;_1/2,%;41/2], the cell centers x;, and the intermediate times =
t"™ + At™, where At™ is chosen according to the usual CFL condition. In the following
subsections, we will briefly introduce two classical schemes for the state, Godunov
and Roe method, and we will adapt them to the sensitivity.

5.1. The Godunov method. In this section, we present an exact Godunov-
type method. Being that the state equations (1) are conservative, the classic update
formula can be used

n n At * *
(21) Uj+1 = Uj - E(F( j+1/2) - F( j—1/2))7

where U}_, /, is the exact intermediate state known implicitly from (19)-(20), with
UL = Uj_l and UR = Uj [21]

The update formula (21) cannot be applied to the sensitivity variable, because of
the source term. However, as explained in section 4.2, the structure of the sensitivity
is made of discontinuities only. Therefore, we can directly compute the average on
each cell, if the slopes of the red lines and the solid blue lines in Figure 3 are known
at each interface j —1/2. The slopes of the red lines are computed from the Rankine—
Hugoniot conditions, while the ones of the blue lines are the eigenvalues evaluated in
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the correct state. We obtain the following formulas (cf. Figure 3 for the notations):

Ul e—Uj—1 . . .

—=t2_—— if 1-shock at interface j — 1/2,

K14 = 17T 12
J=1/2

AM(Uj_q/p) if lrarefaction at interface j —1/2,

% if 2-shock at interface j —1/2,
Koj—1/2 = § 7 “i-1/?
A2(Uj_y /) if 2-rarefaction at interface j —1/2,

K1j—1/2 if 1-shock at interface j — 1/2,
Clj_1/20 =
Li=1/2 AM(Uj_q) if 2-rarefaction at interface j —1/2,

Kgj—1/2 if 2-shock at interface j —1/2,
Coi1/o =
2-1/2 X2(U;)  if 2-rarefaction at interface j — 1/2.

Then, the update formula for the sensitivity is

(22)
At R ~R

Ugj.l =U;,; + A ('iz,j—1/2(UZ,j_1/2 = Uy jo1/2) teaj1/2(U, 10— Ug ;)

* =L =L n
- H1,j+1/2(Ua,j+1/2 - Ua,j+1/2) - Cl,j—1/2(Ua,j+1/2 - Ua,j)) )
. . * * ~R T
where the intermediate states U, ;_1 /5, Ug j11/2, Ug j_1/9, and U, ;_y /5 are known

analytically, from section 4.2. We remark that the source term is encompassed in
(22), since (22) comes from the exact Riemann solver of (6).

5.2. A Roe-type method.

First order. In this section we illustrate a Roe-type Riemann solver, consisting
of three constant states (which we denote Uy, U*, and Ug, for the state and U, 1, Uy,
and U, g for the sensitivity), connected by two discontinuities traveling at velocities

)\fOE _\/_p(T}L—l) 7p(7—]n) | /\gOE \/_p(TJn—l) 7p(7.3n)

1

g-1/2 = n _n J-1/2 = n - n
Ti—1 7 Tj Tj—1 =T

if 7'y # 7 and F,/—p/(7]') otherwise. In the following, we will use the notation
)\f;ol% = )\ﬁﬁ-ﬂ/z = _)‘522/2' The Harten, Lax, and van Leer consistency relations
[13] for the state at the interface j — 1/2 is

* 1 n n F(Un) - F( T'L—l)
23) =12 = 53U+ Uj) = ]2)\301}?2 j'
-

Since Uj_; /5 and A9, are known at each interface, we can write the following
update formula for the state:

n n At * n * T
(24) U; = U; + E()\fﬁ%( i—12 = U7) + )‘ﬁoﬁz( i+12 — UT)).
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Writing the integral conditions for the sensitivity with the source term, one obtains

Fo.(U}, Uy ;) —Fo(Uj_,,Ug ;) — AaST_ )y

= f91€2(UZ,j + UZ,jq) - 2)‘;'%91% Z,j71/27

from which we have the following form for U} ;_, /2

US, n= njo1 TUs;  Fo(UG, UG ) —Fo (U, Uy ) AeS),
a,]— O O
J ? 22X 2AFOE,

The source term is discretized as

n n * d ,J— n * d ,J
(25) j—1/2 = )\f,]O'—EUQ ((Uj—l -Uj_y) Xml + (U} — j—l/2)§;> )

where d ; is a shock detector which is equal to 1 if there is an /—shock in the jth
cell; it is zero elsewhere, and dy ;/Az approximates numerically the Dirac d; in the
definition of the source term (5). In this work, we use a very simple shock detector:
in section 4.1 we showed that the velocity u is decreasing across a shock, whilst the
covolume 7 decreases across a 1-shock, and it increases across a 2-shock. Based on
this, we set

P 1 if uy > u;+1/2 and 7; > T;.‘H/Z,
L = .
0 otherwise,

& 1 ifu; < u;—1/2 and 7; > T]T‘_l/2,
2,5 — .
0 otherwise.

Finally, Uy, ;_; /5 is computed as follows:

. R o Fa(U7, UG ;) —Fo (U7, UG )
aj-1/2 = 5(Uq 1+ Ug ;) — ’ O ROE .
2 2)\j_1/2
(26) )‘RO’E1/2
+2(1)\,;:W ((U?—l - U;—1/2)d1,j—1 + (U;L - U;_1/2)d2,j> :
j—1/2

We remark that the discretization of the source term (25) is such that U:)j71/2 =
9.Uj_1 5, in fact differentiating (23) with respect to a, one finds

aaU;—l/2
7 7 O
_ U, ;1 +U; _ F. (U}, U, ;) - F. (U}, U, ) n F(U}) - F(Uj_,) )‘f,j—El/Z

a j—1 j—1
70] 10) 70]
2 2O, DMOF, ACE,

Using again (23) one has

U,
n n n n n n RO
w1t Us; Fa(UF UG ) —Fa(US Us ) MG

+
2 2A\FOF, 2AFOF,

(U1 +U7 = 2U7_ o),

which is equal to (26), once the shock detectors are added. Furthermore, the definition
(26) encompasses the source term, which means that we can use the update formula
(24) for the sensitivity, too.
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Finally, in order to prepare the second order extension in space, we define a
residual as

(27) Rj(U") = N9, (U5 1 o = UF) + AT T(UG o — UT),

where RJI(U”) is a more compact notation for R’ (U;_;,U;,U;;,). This allows us
to write the update formulas in the following way:

n+1 _ n A I n
{Uj+1 =U" + A—;ARj(IU ),
n n t n
U5 =Ug; + . R;(Ug).

Furthermore, it will be useful for the numerical schemes introduced hereafter.

Second order. We extend this scheme to the second order: for the time dis-
cretization we use a two-step Runge-Kutta method, whilst in space we propose a
monotonic upstream-centered scheme for conservation laws (MUSCL)-type scheme
with some minor modifications in order to have a second order discretization of the
source term. In particular, we remark that (10) is valid only if the solution U is
locally constant to the left and to the right of the shock, which is true for a first order
approximation but not for a second order, in which, classically, the numerical solu-
tion is a piecewise affine function. To overcome this problem, we suggest to consider
the numerical solution to be a piecewise constant function on half of every cell (cf.
[3], section 2.8): the value in the left half (respectively, right half) of the jth cell is
denoted U;_y,4 (respectively, U;1,4), as shown in Figure 6, and they are computed

J
as in a classical MUSCL approach,

U%y,,, =U; £ AUY,

and a usual choice for AUY is given by a slope-limiter procedure. In this work we use
the so-called minmod limiter,

n 1 : n n n n
AU" = imlnmod(Uj+1 - U7, U} — ),

j—1
where the function minmod is defined as follows:

sgn(a) min(lal,]b]) if ab >0,

minmod(a, b) = .
0 otherwise.

Zj—3/2 Tj-1/2 Tjt+1/2 Lj+3/2 z

Fic. 6. Second order discretization. In red, the corresponding first order discretization.

This interpretation of the second order allows us to define the source term as we
did for the first order, however we need to consider an additional Riemann problem
for each cell. This leads to the following definition of the residual:
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R]I‘I(Un) = ( ;%_011‘7“2( im12 = Ujq0) + /\fﬁ%( i+12 = Uliia)
FAFOEQRUS —U; 10+ Ujyaga),

where all the \®OF and the U* are computed from the extrapolated values U, /4.
Finally, the second order scheme writes,

n+1/2 n n ntl1/2 n n
U U A U e s A
Ut = U+ AR (UTH2), Uptt =Ug, + AERT(ULHY2).

5.3. Numerical results. We present some numerical results obtained with the
schemes described in the previous section. The spatial domain is (0, 1), and final time
is T'= 0.03. We consider Riemann problems with z. = 0.5.

First, we consider a 1-shock—2-rarefaction case, with the following initial condi-

tions for the state:
0.7 0.2
o= () ve= ()

The parameter of interest is a = uy, so that the initial conditions for the sensitivity

are
0 0
Ua,L = <1> 9 UCL,R = (O> .

Figure 7 shows the state variables u and 7 and their sensitivities u, and 7, at the
final time T'. Since the state is a quite classical problem, it is not surprising that all
the methods provide very similar solutions one to another. As for the sensitivity, we
remark that the modified formulation is able to remove the peak which approximate
the Dirac delta function, located at x ~ 0.4 and evident in the scheme without cor-
rection term, whose label is “S = 0” in Figures 7-8. However, even with the addition
of the source term, the sensitivity solution have two issues: first, the discontinuity
associated with the state rarefaction is not well captured; secondly, the value of the
plateau in the star zone is not the analytical one. Out of these two problems, the first
is the less important one, for two reasons: the fact that the state rarefaction splits
into two discontinuity for the sensitivity is typical to the PDEs system considered, it
does not happen, for instance, in the case of the complete Euler system; furthermore,
the numerical solution converges to the analytical one as Ax goes to 0, meaning that
this issue can be solved by using a finer mesh or a higher-order scheme. The sec-
ond problem is more critical and we believe that numerical diffusion is the cause of
it. In Figure 9 we plot the convergence curves for the all the schemes and for each
variable: as one can see, all the methods converge as expected for the state variable;
however, for the sensitivity the error seems to be convergent only for coarser meshes,
and it reaches a plateau for finer ones. This can be explained if we split the error
into two parts: the part concentrated in the rarefaction zone, which is the bigger one
in the coarse meshes, converges; however when this part reaches the same order of
magnitude as the error in the star zone, which is constant, the plateau is reached.

The second test case here presented is an isolated 2-shock for the state as well as
for the sensitivity. In order to have an isolated shock we choose the initial data

U= (QQ(TL;UR)) - <—1.56> » Ur= (_3) )
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0 |- -
0.6 1 —02f .
04| }
0.4 B
06| a
——  Exact ——  Exact
Godunov Godunov
—— Roel 0811 _ Roel b
0.2-|— Roell B —— Roe Il
1 1 1 1 1 1 71 = 1 1 1 1 1 1 =
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) 7(=,T) (b) u(z,T)
T T T T T T T T
of ] r y 1p —L a
; o ; .
’ L}
—05| ! : '
‘ —1f ' |
] 1
i '
1] 1
A Exact ! i —2|— Exact H 1
Godunov | |} Godunov | |
— Roel ! _3L|— Roel ' |
— Roell | ! — Roe II 1
~15}|--- S=0 ! N --- S= !
b T T I I I I —4 T I I I L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) Ta(z,T) (d) ua(z,T)
Fic. 7. Classical finite volume schemes.
0.1 X 0.6 X T
' ! ——  Exact
! ' Godunov
B 1 ossfod — Roel ||
' ' —— Roell
—0.12 |- Eﬁ — | : --- S=0
o 05 a
—0.13 1 E —— Exact | ' T —
0! Godunov o
0 — Roel 0451 11 7
—0u i — Roe Il o
0 --- S=0 0
—0.15 L1 I I T T 0. il I I I I
0.4 0.45 0.5 0.55 0.6 %.4 0.45 0.5 0.55 0.6
(a) Ta(z,T) (b) ua(z,T)

F1c. 8. Classical finite volume schemes for sensitivities—zoom.

where ¢ is the 2-wave curve defined in (20). As parameter of interest a we choose the
arc length of the curve go, which yields the following initial data for the sensitivity:

1 1 0
Uor = (g;(TL;UR)> - (—9.35) » Uar= (0) :

Figure 10 shows the results for the state and the sensitivity obtained with a mesh
Az = 1073: one can notice a spurious wave in the state which does not affect the
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0-2F L A —————a ]
5 Godunov E| I Godunov 1
[|—= Roel 1 10-2 | Roel i
[ |—— Roell F|—— Roell E
3 E i 1
1 10k E
10 E 3 8 ]
1 10t E
107° 1 E | ]
i A 105 ) Y ]
Lol 0 v vl Bl v vvnd 0w v 4
107 104 1073 102 10-° 10-4 10-3 1072
(@) I7(2,T) = 7ea(z, T)ll 1 (b) llu(z,T) — vea (z, T)l L1
& 1 e A Al ——————ni 1
r odunov 1 odunov
| |—m— Roel 1 [ |-=— Roel 1
[|—— Roell 1 —— Roe II
[ 1072 1 ]
1073 F B E E
ot ) | E
EHH\ Ll Ll Lol ) :HH\ Lol Ll Lol :
10-° 10-* 1073 1072 107° 10-* 1073 1072
(©) lIralz, T) = Ta,ea (z, T)|| L1 (d) lua(z, T) = ta,ex(z, T 11

Fic. 9. Convergence of the classical finite volume schemes.

value in the star zone. However, in the sensitivity this spurious wave is amplified;
moreover, the value in the star zone is not correct. Considering the fact that the
approximate Riemann solver of Roe is exact in the case of an isolated shock (as well
as the exact Godunov solver), the error is necessarily introduced in the average step of
the numerical methods, and therefore it is due to the numerical diffusion which comes
along with the average operation. For this reason, in the next section we introduce a
scheme without numerical diffusion in the shock.

6. An antidiffusive Roe-type numerical scheme. Since we believe that the
failure of the previous schemes is caused by the numerical diffusion in the shock, we
present a scheme which does not have any numerical diffusion in the shock. The
scheme was first introduced in [5], and here we adapt it to the sensitivity problem. It
is a modified Godunov method, and it can be coupled with any Riemann solver; in
this work we couple it with the Roe-type method proposed in the previous section. In
fact, the first step is to solve a Riemann problem at each interface, as for a standard
Godunov method. The difference between the two methods is in the average step:
instead of averaging on the cells [x;_1,2,%;41/2], a new temporary mesh is defined,
whose jth cell is denoted [E;?_l /2,§§.‘ 1 /2], and the average is performed on this mesh.
The new mesh is nonuniform, and it is defined as follows:

f?—l/Q = l'j_l/Q + U‘;L_l/QAtn,

where or /2 is a proper speed and it depends on the problem. The average operation
on the modified mesh provides us with a piecewise constant solution on the new mesh,
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T
0.5-|— Exact — L5k B
Godunov
— Roel
—— Roe Il
04} a 2 i
0.3 - 8 =251 .
——  Exact
Godunov
— Roel
0.2 B —3||—— Roell —
1 1 1 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) 7(=,T) (b) u(z,T)
T
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08 — Roe II
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(c) Ta(z,T) (d) va(z,T)

Fic. 10. Test case: isolated shock.

—n+1
which we denote U;H . The final step of this method is to go back to the initial mesh,
i.e., compute U}H'l starting from U?Jr , and this is done using a sampling technique:

the value of the solution on the jth cell at time "1, U;‘H, is chosen randomly among
— — —n+1

U;lel , U;»LH, and U?:l, in agreement with their rate of presence in the cell. More
precisely, given a random sequence () varying in (0, 1), the choice is the following:

ﬁ:ljll if apyr € (O, ﬁ—; max(a?_lm, O)) ,
—nt1 .
(28) UM ={T i g €[S max(o?, ,,0),1+ AL mln(a;?+1/2,0)) ,
—n+1 . .
Ujil if apqq € |14+ 2L min(oy, , 5,0), 1) .

The sampling technique mimics the classical averaging if (a,,) is a well distributed
random sequence, for instance, o, ~ U(0, 1), or if it is a deterministic low discrepancy
sequence, such as the van der Corput sequence (cf. [5]):

a, = Xm:z'kr(k“), n= iika,
k=0

k=0

where i = 0,1 is the binary expansion of the integers.
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Our choice for o7’ /2 is the following:

)\?+1/2 Uj > Ujt1 and Tj < Tj+1s
(29) 0;’“/2 = _)‘;‘1+1/2 uj > ujp1 and 7; > Tjqq,
0 otherwise.
If w is increasing, which means that a rarefaction is expected, the mesh is not modified,

whilst in case of expected shock the mesh follows it: in this way one never performs
the average across a shock and therefore there is no numerical diffusion (cf. Figure 11).

Tj-1/2 Tj+1/2

*

i+1/

Uji

T
Tj—1/2 Tjt1/2 z
F1a. 11. Definition of the temporary staggered mesh.

Remark. Considering only the initial (nonmoving) mesh, we remark that this
method can also be understood as solving the following two-step problem:

;U + 9,F(U) — 00, U =0,
(30) {t + (U) -0

U+ 00,U=0.

The first step is equivalent to solving the Riemann problems at each interface and
performing the average on the initial uniform mesh, whilst the second step is equivalent
to the sampling (28).

First order formulas. Here, as already said, we couple this antidiffusive ap-
proach with the same Roe-type approximate Riemann solver we presented in the
previous section, so we define the following residual:

=1 n n n * n *
R;(U") = RJI'(U ) — 051,205 12 + 0711 0U5 10,

where in the definition of ;_1 /5 we use A\j_q/5 = A?_Ol%. Then, the scheme writes

——n+1 Az At ~1
31 U - 2y 2R
(81) i T Az, 0t Ay, U
7;1:1 if a1 € (0, % max(a?flm, O)) ,
U;_”rl = ﬁ;’-*-l if a1 € ﬁ—; max(o7_, ,5,0),1+ ﬁ—; min(o?, /o, O)) ,
=—n+1

m

Uj+1 if Op41

L+ A minfo,y 2,0),1)
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Second order formulas. One can also couple this approach with the second
order Roe-type scheme from the previous section. As for the first order, we define the
new residual as follows:

~ 11 n II n n * n *
R; (U")=R; (U") =07 1,,U;_ 15+ 0711,5Uj11)2

Then the scheme writes

) ~II
Ur}+1/2 :U?"‘ Am—?wJU;L_"_ At Rj (Un)7

(32) o N Y
—=n+l Az—Az;rn+1/2 | At D +1/2
U = Uy + S0 U7 P+ LER, (U9,
ﬁ?jll if a1 € (0, % max(a}ll/z, O)) )
U;.LJrl = ﬁ?+1 if Qpt1 € % max(oy_lﬂ, 0), 1+ % min(a;ﬂ_lm, 0)) ’

=n+1l . .

U,y ifappe 1+ ﬁ—; m1n(a§’+1/2, 0), 1)
From the two-step problem (30) point of view, the discretization (32) is a second
order discretization of the first step followed by the second step, i.e., the sampling
technique, which remains unvaried.

6.1. Numerical results of the antidiffusive method. The results of the
anti-diffusive method for the test case are shown in Figures 12-13. As one can see,
removing the numerical diffusion in the shock for the state variables allows us to

T T T T
0 |- -
0.6 - B —021} i
04| 1
0.4
*\ —0.6 |- B
—  Exact \\ Y Exact
—— Roe I AD “°|— Roe I AD b
0.2 Roe IT AD N~ Roe IT AD
I I | | | | 71 = I I | | | | .|
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(&) 7(z,7) (b) u(z,T)
T T
0 N 1 — 5
// 0.8 B
—0.05 - - 0.6 |- B
0.4 B
—0.1}|— Exact 4 0.2 —  Exact i
—— Roe I AD —— Roe I AD L
Roe IT AD 0 Roe IT AD —
I I Il Il Il Il I I Il Il Il Il
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) Ta(z,T) (d) ua(z,T)

Fic. 12. Antidiffusive Roe-type schemes.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/10/18 to 134.157.3.184. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SENSITIVITY ANALYSIS FOR THE P-SYSTEM A3975

—0.1 0.6
—0.11 | y
0.55 |- N
—0.12 - B
0.5 | il
—0.13 |- B
ol Exact i 0.45 | —  Exact ’
’ —— Roe I AD —— Roe I AD
Roe IT AD Roe IT AD
70'15 Il Il Il Il 0 Il Il Il Il
0.4 0.45 0.5 0.55 0.6 %A 0.45 0.5 0.55 0.6
(a) Ta(z,T) (b) ua(z,T)

F1a. 13. Antidiffusive Roe-type schemes for the sensitivity—zoom.
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Fic. 14. Convergence of Roe-type schemes, with and without numerical diffusion.

be more precise in the definition of the source term which, in turns, provides us with
better solution for the sensitivity: the plateau in the star zone is correct. Furthermore,
we show in Figure 14 the convergence results of the classical Roe-type schemes with
diffusion compared to the same schemes without diffusion: the latter show a good
convergence rate even for the sensitivity variables.
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We now present another test case with initial data

0.7 0.2 0 1
UL—(O)v UR_(O)’ Ua,L—<O); Ua,R_<O>7

therefore the parameter of interest a is in this case 7. The initial data for the state
is the same as in the previous test case, meaning that we are in configuration (b)
of Figure 2 and, since a = 7g, the rarefaction wave splits into two discontinuities
for the sensitivity as shown in Figure 5(a). For this test case we chose a bigger
final time (T' = 0.07) so that the two extremes of the rarefaction wave could be well
separated, in order to attenuate the effect of the numerical diffusion in the middle.
We also changed the starting point of the discontinuity (z. = 0.3) in order to have the
second discontinuity associated with the rarefaction still in the domain at the final
time. The results shown in Figure 15 are obtained with a mesh Az = 10~*: even in
this particular case, with three discontinuities, we are able to approximate well the
sensitivity provided that the mesh is fine enough.

1.5 T T T T

— Exact gl|— Exact B
—— Roe I AD —— Roe I AD r W

Roe I AD Roe I AD

1+ ’7 | 6 g
4 — B

g1 -

| | | | |
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
(a) Ta(x, T = 0.07) (b) wa(z, T = 0.07)

—

F1G. 15. Test case shock-rarefaction, a = Tr: sensitwity. Az = 10~%, T = 0.07.

6.2. Uncertainty quantification. In this section, we show how SA can be
used for uncertainty quantification (UQ). The main aim of UQ is to determine a
confidence interval for the output of a model, in our case U, given the uncertainty on
the input parameters. In this work, we compare two different UQ methods: Monte
Carlo and sensitivity analysis. Both methods aim at providing statistical quantities
like moments (mean, variance, etc.) of the output of the model. In the following,
X will stand for one of the variables, considered as random variables, i.e., X can
either be 7 or u, and X, the corresponding sensitivity. We use the notation ux to
indicate the expected value of the variable X and c% for its variance. Once this
two quantities are known, one can build a confidence interval for the variable X as
ClIx = [ux — kox,ux + kox]. The coefficient x regulates the amplitude of the
interval, and it is related to the probability for the variable X to actually fall in the
interval. For instance, the choice xk = 2 provides a 95% confidence interval.

Monte Carlo method. Here we briefly introduce the Monte Carlo method. The
Monte Carlo method is a probabilistic technique—to obtain an estimate of the average
and of the standard deviation one needs to perform multiple simulations. Let a be the
vector of uncertain parameters, with a known distribution. Then, N random samples
a; are drawn from this distribution, and for each a; the corresponding solution Xj is
computed. Then, the unbiased average and variance estimators are used:
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These estimates are satisfactory if N is sufficiently large: the slow convergence, and
therefore the high computational cost, is probably the main limitation of the Monte
Carlo method.

Sensitivity analysis method. SA is a deterministic approach to estimate the aver-
age ux and the variance 0% of the output X. Let u, be the average of the uncertain
vector a, and o, the covariance matrix:

o2 cov(ai,az) ... cov(ar,apn)
’uf“ cov(ay, az) o2, ... cov(ag,apr)
Ha = : > Oa = . . . >
Han . >
cov(ay, anr) e T

where M is the number of uncertain parameters, ., the average of the ith parameter,
Ugi its variance and cov(-,-) the covariance. One can obtain the following first order

estimates of the average and the variance of the variable X:

M M
px = X(pa), 0% = ZXiai + Z Xo, Xa,cov(a;, aj).
i=1 inj=1
i#£]

Higher order estimates require higher order sensitivities [18].

Test cases. We applied these techniques to two different test cases.

First, we considered a Riemann problem as the one shown in Figures 12-13,
with uncertain left and right values, i.e., the vector of uncertain parameters is a =
(TR, TL, uRr,ur)t, with average ua = (0.2,0.7,0,0)*. We consider that all the param-
eters are independent of each other, i.e., the covariance matrix is diagonal and that
each parameter has a variance of 0.1% of its average, except for the velocity, whose
variance is chosen as 0.0001 for both the left and right values.

In Figure 16 we show the results of the Monte Carlo approach: the average and
the average plus and minus twice the standard deviation (i.e., x = 2) are plotted
in red, five samples are plotted in black. These results are obtained with N = 500
samples, on a mesh with Az = 2x 1073 using a Roe second order antidiffusive scheme.
As one can see, the average process smudges the shock and the standard deviation is
bigger in that zone. In Figure 17 we show the results of the sensitivity approach, on
the same mesh and with the same numerical scheme, when the sensitivity is computed
with the correction term.

The second test case is a problem with the following initial data for the state:

TL T <z — L,

(,0) = (meL)si.nZ(%H%f)ML r.— & <z <a,
(m — 7R) sin (%W—i—%)—i—ng xchgxc+§,
TR x>z + L,

u(z,0) = 0.
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F1a. 16. Monte Carlo approach for the Riemann problem, second order antidiffusive scheme.
Average and the average plus and minus twice the standard deviation in red. Five samples in black
dashed lines.
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Fic. 17. SA approach with correction for the Riemann problem, second order antidiffusive
scheme. Average and the average plus and minus twice the standard deviation in red. Five samples
in black dashed lines.

The initial data for 7 is plotted in Figure 18. The vector of uncertain parameters
is a = (g, 71, e, m, £)t, with average pa = (0.4,0.7,0.5,0.05,0.25)¢. Each parameter
has a variance of 0.1% and they are all independent of each other, leading to a diagonal
covariance matrix o,.

In Figure 19 we show the results of the Monte Carlo approach: the average and
the average plus and minus twice the standard deviation (i.e., k = 2) are plotted
in red, five samples are plotted in black. These results are obtained with N = 500
samples, on a mesh with Az = 2x 1073 using a Roe second order antidiffusive scheme.
As one can see, the average process smudges the shock and the standard deviation is
bigger in that zone. In Figure 20 we show the results of the sensitivity approach, on
the same mesh and with the same numerical scheme, when the sensitivity is computed
with the correction term.

One can notice that in the regular zones the two methods provide exactly the
same results for the Riemann problem, and similar results for the second test case
considered, for which the intervals computed with the sensitivity method are slightly
larger in the middle zone certainly due to nonlinear effects which are not taken into
account by this first-order estimate of the moments. In the discontinuity, the change
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Fic. 18. Initial data for T.

0.8}

0.6

04}

0.2}

| | | |
0 02 04 06 08 1 0 02 04 06 08 1
(a) 7(z, T) (0) u(=,T)

F1c. 19. Monte Carlo approach, second order antidiffusive scheme. Awverage and the average
plus and minus twice the standard deviation in red. Five samples in black dashed lines.
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Fia. 20. SA approach with correction, second order antidiffusive scheme. Average and the
average plus and minus twice the standard deviation in red. Five samples in black dashed lines.

in the shock speed is neglected with the sensitivity approach, because the average is
approximated with only one realization of the state, and this is why the samples do not
fall in the confidence interval in that zone for both test cases. However, the sensitivity
approach is less expensive: the Monte Carlo approach requires 500 solutions of the
state, whilst the SA approach necessitates only one solution of the state and as many
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solutions of the sensitivity as the number of uncertain parameters, i.e., 4 for the first
test case and 5 for the second.

7. Conclusion and discussion. The first goal of this work was to define a
sensitivity system providing a solution which is suitable for applications, i.e., with-
out peaks approximating the Dirac delta function: this was achieved by adding a
properly defined source term. However, the numerical results presented in section 5.3
show that the numerical diffusion plays a very important role in the discretization
of the sensitivity system, to such an extent that classical finite volume schemes do
not converge to the analytical solution: in particular, the value of the plateau in the
star zone is not correct. To overcome this problem, we propose a numerical scheme
based on sampling techniques, which does not have any numerical diffusion: with this
scheme we are able to discretise more precisely the source term and to obtain a correct
solution for the sensitivity, too.

Currently, we are extending this to the complete Euler system. This will allow us
to tackle more realistic problems and to use the sensitivity analysis for the applications
described in the introduction.
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