Sensitivity analysis for the Euler equations in Lagrangian coordinates

16 May 2017 SHARK-FV 2017, Ofir, Portugal

<u>Camilla Fiorini</u>¹ Christophe Chalons¹ Régis Duvigneau²

¹ LMV, UVSQ, Versailles

² Université Côte d'Azur, INRIA, Sophia-Antipolis

Outline of the talk

- Sensitivity analysis
- Sensitivity analysis for hyperbolic equations
- Euler equations in barotropic conditions (*p*-system)
- Classical numerical schemes and results
- Anti-diffusive numerical scheme and results

Sensitivity Analysis

Sensitivity Analysis

Sensitivity analysis: study of how changes in the **inputs** of a model affect the **outputs**

Optimization

Optimization

Problem: $\min_{a \in A} J(\mathbf{U})$, where $J(\mathbf{U}) = \frac{1}{2}b(\mathbf{U}, \mathbf{U})$ and *b* is bilinear. Classical optimization techniques call for the differentiation of the cost function:

$$\frac{\partial J(\mathbf{U})}{\partial a} = b(\mathbf{U}, \mathbf{U}_a)$$

- Optimization
- Quick evaluation of close solutions

- Optimization
- Quick evaluation of close solutions

 $\mathbf{U}(a+\delta a) = \mathbf{U}(a) + \delta a \mathbf{U}_a(a) + o(\delta a^2)$

- Optimization
- Quick evaluation of close solutions
- Uncertainty quantification

- Optimization
- Quick evaluation of close solutions
- Uncertainty quantification

First order estimates μ $\mathbf{U}(\mu_a)$ $\sigma^2 \mathbf{U}_a(\mu_a)^T \mathbf{U}_a(\mu_a) \sigma_a^2$

 $\begin{cases} \partial_t \mathbf{U} + \nabla \mathbf{F}(\mathbf{U}) = 0 & \Omega \times (0, T), \\ \mathbf{U}(x, 0) = \mathbf{g}(x) & \Omega, \end{cases}$

 $\begin{cases} \partial_a(\partial_t \mathbf{U}) + \partial_a(\nabla \mathbf{F}(\mathbf{U})) = 0 & \Omega \times (0, T), \\ \partial_a \mathbf{U}(x, 0) = \partial_a \mathbf{g}(x) & \Omega, \end{cases}$

$$\begin{cases} \partial_a(\partial_t \mathbf{U}) + \partial_a(\nabla \mathbf{F}(\mathbf{U})) = 0 & \Omega \times (0, T), \\ \partial_a \mathbf{U}(x, 0) = \partial_a \mathbf{g}(x) & \Omega, \end{cases}$$

 $\begin{cases} \partial_t \mathbf{U}_a + \nabla \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = 0 & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

 $\begin{cases} \partial_t \mathbf{U}_a + \nabla \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = 0 & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

This can be done under **hypotheses of regularity** of the state **U**.

 $\begin{cases} \partial_t \mathbf{U}_a + \nabla \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = 0 & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

This can be done under hypotheses of regularity of the state U.

If these techniques are applied to hyperbolic equations, **Dirac delta functions** will appear in the sensitivity.

Sensitivity analysis for hyperbolic equations

$$\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S} & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$$

defined as follows:

$$\mathbf{S} = \sum_{k=1}^{N_s} \boldsymbol{\rho}_k \delta(x - x_{k,s}(t)),$$

$$\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S} & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$$

defined as follows:

number of discontinuities

$$\mathbf{S} = \sum_{k=1}^{N_s} \boldsymbol{\rho}_k \delta(x - x_{k,s}(t)),$$

 $\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S} & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

defined as follows:

number of discontinuities

position of the k-th discontinuity

 $\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S} & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

 $\rho_k \delta(x - x_{k,s}(t)),$

defined as follows:

 $\mathbf{S} =$

number of discontinuities

position of the k-th discontinuity

amplitude of the k-th correction (to be computed)

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

$$oldsymbol{
ho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\sigma + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

$$\boldsymbol{\rho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\boldsymbol{\sigma} + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

Rankine-Hugoniot conditions for the state: $(\mathbf{U}^+ - \mathbf{U}^-)\sigma = \mathbf{F}^+ - \mathbf{F}^-$

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

$$\boldsymbol{
ho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\sigma + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

Rankine-Hugoniot conditions for the state: $(\mathbf{U}^+ - \mathbf{U}^-)\sigma = \mathbf{F}^+ - \mathbf{F}^-$

Differentiating them w.r.t. the parameter: $(\mathbf{U}_a^+ - \mathbf{U}_a^-)\sigma + (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a = \mathbf{F}_a^+ - \mathbf{F}_a^-$

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

 σ

 $t_1 - \frac{1}{x_1 x_c} - \frac{1}{x_2}$

 t_2

By integrating the sensitivity equations with the source term on the control volume, one has:

$$\boldsymbol{
ho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\sigma + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

Rankine-Hugoniot conditions for the state: $(\mathbf{U}^+ - \mathbf{U}^-)\sigma = \mathbf{F}^+ - \mathbf{F}^-$

Differentiating them w.r.t. the parameter:

Finally, we obtain the following amplitude:

$$(\mathbf{U}_a^+ - \mathbf{U}_a^-)\sigma + (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a = \mathbf{F}_a^+ - \mathbf{F}_a^-$$

$$\boldsymbol{\rho} = (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a$$

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

$$\boldsymbol{
ho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\sigma + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

Rankine-Hugoniot conditions for the state: $(\mathbf{U}^+ - \mathbf{U}^-)\sigma = \mathbf{F}^+ - \mathbf{F}^-$

Differentiating them w.r.t. the parameter:

Finally, we obtain the following amplitude: $\rho = (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a$

$$\mathbf{S} = \sum_{k=1}^{N_s} \boldsymbol{\rho}_k \delta(x - x_{k,s}(t)),$$

Sensitivity Analysis for the Euler equations in Lagrangian coordinates 9 / 27

$$\mathbf{r} = (\mathbf{T}\mathbf{T}^+, \mathbf{T}\mathbf{T}^-)\mathbf{r}$$

 $(\mathbf{U}_a^+ - \mathbf{U}_a^-)\sigma + (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a = \mathbf{F}_a^+ - \mathbf{F}_a^-$

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has:

 $x_1 x_c$

$$\boldsymbol{\rho} = (\mathbf{U}_a^- - \mathbf{U}_a^+)\boldsymbol{\sigma} + \mathbf{F}_a^+ - \mathbf{F}_a^-$$

Rankine-Hugoniot conditions for the state:

Differentiating them w.r.t. the parameter:

Finally, we obtain the following amplitude:

$$\mathbf{S} = \sum_{k=1}^{N_s} \boldsymbol{\rho}_k \delta(x - x_{k,s}(t)),$$

A shock detector is necessary

$$\boldsymbol{p} = (\boldsymbol{e}_a \quad \boldsymbol{e}_a) \boldsymbol{e} + \boldsymbol{r}_a$$

 $(\mathbf{U}_a^+ - \mathbf{U}_a^-)\sigma + (\mathbf{U}^+ - \mathbf{U}^-)\sigma_a = \mathbf{F}_a^+ - \mathbf{F}_a^-$

Sensitivity Analysis for the Euler equations in Lagrangian coordinates **Camilla Fiorini** / 27

 x_2

 t_2

 t_1

Euler equations in barotropic conditions: the *p*-system

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, \\ \partial_t u + \partial_x p(\tau) = 0. \end{cases}$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 11 / 27

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0\\ \partial_t u + \partial_x p(\tau) = 0. & p''(\tau) > 0 \end{cases}$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 11 / 27

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0 \\ \partial_t u + \partial_x p(\tau) = 0, & p''(\tau) > 0 \end{cases} \qquad \begin{aligned} \lambda_1(\mathbf{U}) &= -\sqrt{-p'(\tau)} \\ \lambda_2(\mathbf{U}) &= \sqrt{-p'(\tau)} \end{cases}$$

Camilla FioriniSensitivity Analysis for the Euler equations in Lagrangian coordinates11 / 27

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0 & \lambda_1(\mathbf{U}) = -\sqrt{-p'(\tau)} & \mathbf{r}_1(\mathbf{U}) = (1, \sqrt{-p'(\tau)})^T \\ \partial_t u + \partial_x p(\tau) = 0, & p''(\tau) > 0 & \lambda_2(\mathbf{U}) = \sqrt{-p'(\tau)} & \mathbf{r}_2(\mathbf{U}) = (1, -\sqrt{-p'(\tau)})^T \end{cases}$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 11 / 27

The *p*-system writes:

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

11 / 27

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0 & \lambda_1(\mathbf{U}) = -\sqrt{-p'(\tau)} & \mathbf{r}_1(\mathbf{U}) = (1, \sqrt{-p'(\tau)})^T \\ \partial_t u + \partial_x p(\tau) = 0, & p''(\tau) > 0 & \lambda_2(\mathbf{U}) = \sqrt{-p'(\tau)} & \mathbf{r}_2(\mathbf{U}) = (1, -\sqrt{-p'(\tau)})^T \end{cases}$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 12 / 27

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0 & \lambda_1(\mathbf{U}) = -\sqrt{-p'(\tau)} & \mathbf{r}_1(\mathbf{U}) = (1, \sqrt{-p'(\tau)})^T \\ \partial_t u + \partial_x p(\tau) = 0, & p''(\tau) > 0 & \lambda_2(\mathbf{U}) = \sqrt{-p'(\tau)} & \mathbf{r}_2(\mathbf{U}) = (1, -\sqrt{-p'(\tau)})^T \end{cases}$$

$$g_{1}(\tau; \mathbf{U}_{L}) = \begin{cases} u_{L} - \sqrt{-(\tau^{-\gamma} - \tau_{L}^{-\gamma})(\tau - \tau_{L})} & \text{if } \tau \leq \tau_{L}, \\ u_{L} + \frac{2\sqrt{\gamma}}{1-\gamma}(\tau^{\frac{1-\gamma}{2}} - \tau_{L}^{\frac{1-\gamma}{2}}) & \text{if } \tau > \tau_{L}. \end{cases}$$

$$g_{2}(\tau; \mathbf{U}_{R}) = \begin{cases} u_{R} + \sqrt{-(\tau^{-\gamma} - \tau_{R}^{-\gamma})(\tau - \tau_{R})} & \text{if } \tau \leq \tau_{R}, \\ u_{R} + \frac{2\sqrt{\gamma}}{1-\gamma}(\tau_{R}^{\frac{1-\gamma}{2}} - \tau^{\frac{1-\gamma}{2}}) & \text{if } \tau > \tau_{R}. \end{cases}$$

$$u^{*} = g_{1}(\tau^{*}; \mathbf{U}_{L}) = g_{2}(\tau^{*}; \mathbf{U}_{R})$$
The Riemann problem for the *p*-system

The *p*-system writes:

$$\begin{cases} \partial_t \tau - \partial_x u = 0, & p'(\tau) < 0 & \lambda_1(\mathbf{U}) = -\sqrt{-p'(\tau)} & \mathbf{r}_1(\mathbf{U}) = (1, \sqrt{-p'(\tau)})^T \\ \partial_t u + \partial_x p(\tau) = 0, & p''(\tau) > 0 & \lambda_2(\mathbf{U}) = \sqrt{-p'(\tau)} & \mathbf{r}_2(\mathbf{U}) = (1, -\sqrt{-p'(\tau)})^T \end{cases}$$

$$g_{1}(\tau; \mathbf{U}_{L}) = \begin{cases} u_{L} - \sqrt{-(\tau^{-\gamma} - \tau_{L}^{-\gamma})(\tau - \tau_{L})} & \text{if } \tau \leq \tau_{L}, \\ u_{L} + \frac{2\sqrt{\gamma}}{1-\gamma}(\tau^{\frac{1-\gamma}{2}} - \tau_{L}^{\frac{1-\gamma}{2}}) & \text{if } \tau > \tau_{L}. \end{cases}$$

$$g_{2}(\tau; \mathbf{U}_{R}) = \begin{cases} u_{R} + \sqrt{-(\tau^{-\gamma} - \tau_{R}^{-\gamma})(\tau - \tau_{R})} & \text{if } \tau \leq \tau_{R}, \\ u_{R} + \frac{2\sqrt{\gamma}}{1-\gamma}(\tau_{R}^{\frac{1-\gamma}{2}} - \tau^{\frac{1-\gamma}{2}}) & \text{if } \tau > \tau_{R}. \end{cases}$$

$$u^{*} = g_{1}(\tau^{*}; \mathbf{U}_{L}) = g_{2}(\tau^{*}; \mathbf{U}_{R})$$

$$\tilde{\tau}_{1} = \left(\frac{\gamma t^{2}}{(x - x_{c})^{2}}\right)^{\frac{1}{\gamma + 1}} \quad \tilde{u}_{1} = u_{L} + \frac{2\sqrt{\gamma}}{1 - \gamma} \left(\tilde{\tau}_{1}^{\frac{1 - \gamma}{2}} - \tau_{L}^{\frac{1 - \gamma}{2}}\right)$$
$$\tilde{\tau}_{2} = \left(\frac{\gamma t^{2}}{(x - x_{c})^{2}}\right)^{\frac{1}{\gamma + 1}} \quad \tilde{u}_{2} = u_{R} + \frac{2\sqrt{\gamma}}{1 - \gamma} \left(\tau_{R}^{\frac{1 - \gamma}{2}} - \tilde{\tau}_{2}^{\frac{1 - \gamma}{2}}\right)$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 12 / 27

The sensitivity system

The sensitivity system writes:

$$\begin{cases} \partial_{t}\tau_{a} - \partial_{x}u_{a} = S_{\tau}, \\ \partial_{t}u_{a} + \partial_{x}(p'(\tau)\tau_{a}) = S_{u}. \\ u^{*} = g_{1}(\tau^{*}; \mathbf{U}_{L}) = g_{2}(\tau^{*}; \mathbf{U}_{R}) \\ u^{*}_{a} = g'_{1}(\tau^{*}; \mathbf{U}_{L})\tau^{*}_{a} + \frac{\partial g_{1}}{\partial \tau_{L}}(\tau^{*}; \mathbf{U}_{L})\tau_{a,L} + \frac{\partial g_{1}}{\partial u_{L}}(\tau^{*}; \mathbf{U}_{L})u_{a,L} = \\ = g'_{2}(\tau^{*}; \mathbf{U}_{R})\tau^{*}_{a} + \frac{\partial g_{2}}{\partial \tau_{R}}(\tau^{*}; \mathbf{U}_{R})\tau_{a,R} + \frac{\partial g_{2}}{\partial u_{R}}(\tau^{*}; \mathbf{U}_{R})u_{a,R}, \\ \tau^{*}_{a} = \frac{\frac{\partial g_{2}}{\partial \tau_{R}}(\tau^{*}; \mathbf{U}_{R})\tau_{a,R} + \frac{\partial g_{2}}{\partial u_{R}}(\tau^{*}; \mathbf{U}_{R})u_{a,R} - \frac{\partial g_{1}}{\partial \tau_{L}}(\tau^{*}; \mathbf{U}_{L})\tau_{a,L} - \frac{\partial g_{1}}{\partial u_{L}}(\tau^{*}; \mathbf{U}_{L})u_{a,L}}{g'_{1}(\tau^{*}; \mathbf{U}_{L}) - g'_{2}(\tau^{*}; \mathbf{U}_{R})} \\ \tilde{\tau}_{a,1} = 0 \qquad \tilde{u}_{a,1} = \frac{\partial \tilde{u}_{1}}{\partial a} = u_{a,L} - \sqrt{\gamma}\tau_{L}^{-\frac{1+\gamma}{2}}\tau_{a,L} \\ \tilde{\tau}_{a,2} = 0 \qquad \tilde{u}_{a,2} = \frac{\partial \tilde{u}_{2}}{\partial a} = u_{a,R} + \sqrt{\gamma}\tau_{R}^{-\frac{1+\gamma}{2}}\tau_{a,R} \end{cases}$$

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 13 / 27

The sensitivity system

The sensitivity system writes:

$$\begin{cases} \partial_t \tau_a - \partial_x u_a = S_\tau, \\ \partial_t u_a + \partial_x (p'(\tau)\tau_a) = S_u. \end{cases}$$

Classical Numerical Schemes

Exact Godunov-type scheme

Exact Godunov-type scheme

State:
$$\mathbf{U}_{j}^{n+1} = \mathbf{U}_{j}^{n} - \frac{\Delta t}{\Delta x} (\mathbf{F}(\mathbf{U}_{j+1/2}^{*}) - \mathbf{F}(\mathbf{U}_{j-1/2}^{*}))$$

Sensitivity: non conservative, but composed only by discontinuities

direct average

- Exact Godunov-type scheme
- First order Roe-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme

State:
$$\mathbf{U}_{j}^{n+1} = \mathbf{U}_{j}^{n} + \frac{\Delta t}{\Delta x} (\lambda_{j-1/2}^{ROE} (\mathbf{U}_{j-1/2}^{*} - \mathbf{U}_{j}^{n}) + \lambda_{j+1/2}^{ROE} (\mathbf{U}_{j+1/2}^{*} - \mathbf{U}_{j}^{n}))$$

<u>Sensitivity</u>: the source term is encompassed in the definition of $\mathbf{U}_{a,j-1/2}^*$:

$$\begin{split} \mathbf{J}_{a,j-1/2}^{*} &= \frac{1}{2} (\mathbf{U}_{a,j-1}^{n} + \mathbf{U}_{a,j}^{n}) - \frac{\mathbf{F}_{a} (\mathbf{U}_{j}^{n}, \mathbf{U}_{a,j}^{n}) - \mathbf{F}_{a} (\mathbf{U}_{j-1}^{n}, \mathbf{U}_{a,j}^{n})}{2\lambda_{j-1/2}^{ROE}} \\ &+ \frac{\lambda_{a,j-1/2}^{ROE}}{2\lambda_{j-1/2}^{ROE}} \left((\mathbf{U}_{j-1}^{n} - \mathbf{U}_{j-1/2}^{*}) d_{1,j-1} + (\mathbf{U}_{j}^{n} - \mathbf{U}_{j-1/2}^{*}) d_{2,j} \right). \end{split}$$

- Exact Godunov-type scheme
- First order Roe-type scheme

State:
$$\mathbf{U}_{j}^{n+1} = \mathbf{U}_{j}^{n} + \frac{\Delta t}{\Delta x} (\lambda_{j-1/2}^{ROE} (\mathbf{U}_{j-1/2}^{*} - \mathbf{U}_{j}^{n}) + \lambda_{j+1/2}^{ROE} (\mathbf{U}_{j+1/2}^{*} - \mathbf{U}_{j}^{n}))$$

<u>Sensitivity</u>: the source term is encompassed in the definition of $\mathbf{U}_{a,j-1/2}^*$:

$$\begin{aligned} \mathbf{U}_{a,j-1/2}^{*} &= \frac{1}{2} (\mathbf{U}_{a,j-1}^{n} + \mathbf{U}_{a,j}^{n}) - \frac{\mathbf{F}_{a} (\mathbf{U}_{j}^{n}, \mathbf{U}_{a,j}^{n}) - \mathbf{F}_{a} (\mathbf{U}_{j-1}^{n}, \mathbf{U}_{a,j}^{n})}{2\lambda_{j-1/2}^{ROE}} \\ &+ \frac{\lambda_{a,j-1/2}^{ROE}}{2\lambda_{j-1/2}^{ROE}} \left((\mathbf{U}_{j-1}^{n} - \mathbf{U}_{j-1/2}^{*}) d_{1,j-1} + (\mathbf{U}_{j}^{n} - \mathbf{U}_{j-1/2}^{*}) d_{2,j} \right) \\ &- \mathbf{Shock} \\ & \text{detectors} \end{aligned}$$

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

Time discretisation: two-step Runge-Kutta method

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

Time discretisation: two-step Runge-Kutta method

Space discretisation: MUSCL-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

- Exact Godunov-type scheme
- First order Roe-type scheme
- Second order Roe-type scheme

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

The same schemes **with source term** for the sensitivity:

Problems:

- the rarefaction is a discontinuity for the sensitivity,
 - the sensitivity value in the star zone is not correct.

Problems:

- the rarefaction is a discontinuity for the sensitivity,
 - the sensitivity value in the star zone is not correct.

Camilla Fiorini Sensitivity Analysis for the Euler equations in Lagrangian coordinates 18 / 27

Convergence

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

Numerical Scheme without diffusion

Camilla FioriniSensitivity Analysis for the Euler equations in Lagrangian coordinates21 / 27

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : average

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 0 : initial data discretisation

- Step 1 : solution of the Riemann problems, one for each interface
- Step 2 : definition of a staggered mesh on which the average is performed

Step 0 : initial data discretisation

- Step 1 : solution of the Riemann problems, one for each interface
- Step 2 : definition of a staggered mesh on which the average is performed

 $\overline{x}_{j-1/2} = x_{j-1/2} + \sigma_{j-1/2} \Delta t$

Step 0 : initial data discretisation

- Step 1 : solution of the Riemann problems, one for each interface
- Step 2 : definition of a staggered mesh on which the average is performed

Step 3 : projection on the initial mesh

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : definition of a staggered mesh on which the average is performed

Step 3 : projection on the initial mesh

$$\overline{\mathbf{U}_{j-1}} \qquad \overline{\mathbf{U}_{j}} \qquad \overline{\mathbf{U}_{j+1}}$$

$$\overline{\mathbf{U}_{j-1}} \qquad \overline{\overline{\mathbf{U}}_{j}} \qquad \overline{\overline{\mathbf{U}}_{j+1}}$$

$$\mathbf{U}_{j} = \begin{cases} \overline{\mathbf{U}}_{j-1} & \text{if } a \in \left(0, \frac{\Delta t}{\Delta x} \max(\sigma_{j-1/2}, 0)\right), \\ \overline{\mathbf{U}}_{j} & \text{if } a \in \left[\frac{\Delta t}{\Delta x} \max(\sigma_{j-1/2}, 0), 1 + \frac{\Delta t}{\Delta x} \min(\sigma_{j+1/2}, 0)\right), \\ \overline{\mathbf{U}}_{j+1} & \text{if } a \in \left[1 + \frac{\Delta t}{\Delta x} \min(\sigma_{j+1/2}, 0), 1\right). \end{cases}$$

 $a \sim \mathcal{U}([0,1])$

Results

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

Results

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

Results

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates
Convergence

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

Results

Camilla Fiorini

Sensitivity Analysis for the Euler equations in Lagrangian coordinates

25 / 27

Conclusion and future development

Conclusion:

- We defined a sensitivity system valid in case of discontinuous state
- The correction term is well defined
- It is necessary to control the numerical diffusion in the shock

Future development:

- Extension to the Euler system
- Extension to 2D
- Applications

Thank you for your attention!