Sensitivity analysis for hyperbolic PDEs systems with discontinuous solution

5 July 2018, Roscoff

École de recherche en mathématiques pour l'énergie nucléaire

Camilla Fiorini¹

Christophe Chalons¹

Régis Duvigneau²

¹ LMV, UVSQ, Versailles

² Université Côte d'Azur, INRIA, Sophia-Antipolis

Outline of the talk

- Sensitivity analysis
- Sensitivity analysis for hyperbolic equations
- Riemann problem for the Euler equations and their sensitivity
- Classical numerical schemes
- Anti-diffusive numerical schemes
- Numerical results
- Uncertainty quantification

Sensitivity Analysis

Sensitivity Analysis

Sensitivity analysis: study of how changes in the **inputs** of a model affect the **outputs**

 $\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0 & \Omega \times (0, T), \\ \mathbf{U}(x, 0) = \mathbf{g}(x) & \Omega, \end{cases}$

```
\begin{cases} \partial_a(\partial_t \mathbf{U}) + \partial_a(\partial_x \mathbf{F}(\mathbf{U})) = 0 & \Omega \times (0, T), \\ \partial_a \mathbf{U}(x, 0) = \partial_a \mathbf{g}(x) & \Omega, \end{cases}
```

$$\begin{aligned} & \overbrace{\partial_a(\partial_t \mathbf{U}) + \partial_a(\partial_x \mathbf{F}(\mathbf{U})) = 0}^{\bullet} & \Omega \times (0, T), \\ & \overbrace{\partial_a \mathbf{U}(x, 0) = \partial_a \mathbf{g}(x)}^{\bullet} & \Omega, \end{aligned}$$

 $\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = 0 & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

 $\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = 0 & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

This can be done under hypotheses of regularity of the state U.

If these techniques are applied to hyperbolic equations, **Dirac delta functions** will appear in the sensitivity.

Sensitivity analysis for hyperbolic equations In order to have a sensitivity system which is valid also when the state is discontinuous, we add a correction term:

 $\begin{cases} \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S} & \Omega \times (0, T), \\ \mathbf{U}_a(x, 0) = \mathbf{g}_a(x) & \Omega, \end{cases}$

 $\sum \rho_k \delta(x - x_{k,s}(t)),$

defined as follows:

 $\mathbf{S} = \mathbf{S}$

number of discontinuities

position of the k-th discontinuity

amplitude of the k-th correction (to be computed)

Remark: a shock detector is necessary to discretise such source term.

Camilla Fiorini

Definition of the source term

To compute the amplitude of the correction, we consider an infinitesimal control volume containing a single discontinuity:

By integrating the sensitivity equations with the source term on the control volume, one has: $\boldsymbol{\rho}_k = (\mathbf{U}_a^- - \mathbf{U}_a^+)\boldsymbol{\sigma}_k + \mathbf{F}_a^+ - \mathbf{F}_a^-$

 $x_1 x_c$

 x_2

Rankine-Hugoniot conditions for the state: $(\mathbf{U}^+ - \mathbf{U}^-)\sigma_k = \mathbf{F}^+ - \mathbf{F}^-$

 t_2 -

 t_1

Differentiating them w.r.t. the parameter:

$$\mathbf{U}_{a}^{-} - \mathbf{U}_{a}^{+} \sigma_{k} + (\mathbf{U}^{-} - \mathbf{U}^{+}) \sigma_{k,a} + \sigma_{k} (\partial_{x} \mathbf{U}^{+} - \partial_{x} \mathbf{U}^{-}) \partial_{a} x_{k,s}(t) =$$
$$= \mathbf{F}_{a}^{-} - \mathbf{F}_{a}^{+} + \left(\frac{\partial \mathbf{F}(\mathbf{U}^{+})}{\partial \mathbf{U}} \partial_{x} \mathbf{U}^{+} - \frac{\partial \mathbf{F}(\mathbf{U}^{-})}{\partial \mathbf{U}} \partial_{x} \mathbf{U}^{-} \right) \partial_{a} x_{k,s}(t).$$

Finally, we obtain the following amplitude: $\rho_k = (\mathbf{U}^+ - \mathbf{U}^-)\sigma_{a,k}$

Camilla Fiorini

Riemann problem for Euler equations and their sensitivity

The Riemann problem for Euler equations

The Euler equations write:

 $\begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0, \\ \partial_t (\rho E) + \partial_x (u(\rho E + p)) = 0, \end{array} \end{array}$

Eigenvalues:	Eigenvectors:
$\lambda_1(\mathbf{U}) = u - c,$	$\mathbf{r}_1(\mathbf{U}) = (1, u - c, H - uc)^t,$
$\lambda_2(\mathbf{U}) = u,$	$\mathbf{r}_2(\mathbf{U}) = (1, u, \frac{u^2}{2})^t,$
$\lambda_3(\mathbf{U}) = u + c.$	$\mathbf{r}_3(\mathbf{U}) = (1, u + c, H + uc)^t.$

Genuinely nonlinear

Camilla Fiorini

The Riemann problem for Euler equations

The Euler equations write:

 $\begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0, \\ \partial_t (\rho E) + \partial_x (u(\rho E + p)) = 0, \end{array} \end{array}$

Eigenvalues:Eigenvectors:
$$\lambda_1(\mathbf{U}) = u - c,$$
 $\mathbf{r}_1(\mathbf{U}) = (1, u - c, H - uc)^t,$ $\lambda_2(\mathbf{U}) = u,$ $\mathbf{r}_2(\mathbf{U}) = (1, u, \frac{u^2}{2})^t,$ $\lambda_3(\mathbf{U}) = u + c.$ $\mathbf{r}_3(\mathbf{U}) = (1, u + c, H + uc)^t.$

Linearly degenerate

Camilla Fiorini

The Riemann problem for Euler equations

The Riemann problem for the sensitivity equations

The sensitivity system writes:

$$\begin{aligned} \partial_t \rho_a &+ \partial_x (\rho u)_a = S_1, \\ \partial_t (\rho u)_a &+ \partial_x (\rho_a u^2 + 2\rho u u_a + p_a) = S_2, \\ \partial_t (\rho E)_a &+ \partial_x (u_a (\rho E + p) + u((\rho E)_a + p_a)) = S_3, \end{aligned}$$

Eigenvalues:

$$\lambda_1(\mathbf{U}) = u - c,$$

$$\lambda_2(\mathbf{U}) = u,$$

$$\lambda_3(\mathbf{U}) = u + c.$$

Classical Numerical Schemes

Remark: the state and the sensitivity systems are solved **separately**.

 $\begin{cases} \partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0\\ \partial_t \mathbf{U}_a + \partial_x \mathbf{F}_a(\mathbf{U}, \mathbf{U}_a) = \mathbf{S}(\mathbf{U}) \qquad \mathbf{S}(\mathbf{U}) = \sum_{k=1}^{N_s} \sigma_{a,k} (\mathbf{U}_k^+ - \mathbf{U}_k^-) \end{cases}$

Remark: HLL-type schemes cannot be used for the state, two intermediate star states are necessary to have a well-defined the source term for the sensitivity.

Approximate Riemann solver for the state

First order Roe-type scheme

$$\begin{split} \lambda_1^{ROE} &= \tilde{u} - \tilde{c}_3 \quad \lambda_2^{ROE} = \tilde{u} \quad \lambda_3^{ROE} = \tilde{u} + \tilde{c} \quad \text{Roe-averaged eigenvalues} \\ \mathbf{U}_R - \mathbf{U}_L &= \sum_{k=1}^{3} \alpha_i \tilde{\mathbf{r}}_i \quad \text{decomposition along Roe-averaged eigenvectors} \\ \mathbf{U}_L^* &= \mathbf{U}_L + \alpha_1 \tilde{\mathbf{r}}_1 \quad \mathbf{U}_R^* = \mathbf{U}_R - \alpha_3 \tilde{\mathbf{r}}_3 \end{split}$$

Camilla Fiorini

Approximate Riemann solvers for the sensitivity

HLL-type scheme: simpler structure that the state solver.
 HLL consistency conditions yield:

 $\begin{aligned} \mathbf{U}_{a,j-1/2}^{*} &= \frac{1}{\lambda_{3}^{ROE} - \lambda_{1}^{ROE}} \left(\lambda_{3}^{ROE} \mathbf{U}_{a,j}^{n} - \lambda_{1}^{ROE} \mathbf{U}_{a,j-1}^{n} - \mathbf{F}_{a}(\mathbf{U}_{j}, \mathbf{U}_{a,j}) + \mathbf{F}_{a}(\mathbf{U}_{j-1}, \mathbf{U}_{a,j-1}) + \mathbf{S}_{j-1/2} \right) \\ &\qquad \mathbf{S}_{j-1/2} = \partial_{a} \lambda_{1,j-1/2}^{ROE} (\mathbf{U}_{L,j-1/2}^{*} - \mathbf{U}_{j-1}) d_{1,j-1/2} \\ &\qquad + \partial_{a} \lambda_{2,j-1/2}^{ROE} (\mathbf{U}_{R,j-1/2}^{*} - \mathbf{U}_{L,j-1/2}^{*}) \\ &\qquad + \partial_{a} \lambda_{3,j-1/2}^{ROE} (\mathbf{U}_{j} - \mathbf{U}_{R,j-1/2}^{*}) d_{3,j-1/2} \end{aligned}$

HLLC-type scheme: same structure as the state.

HLL consistency conditions + Rankine-Hugoniot conditions. Equivalent to:

$$\mathbf{U}_{a,L}^* = \mathbf{U}_{a,L} + \alpha_{1,a}\tilde{\mathbf{r}}_1 + \alpha_1\tilde{\mathbf{r}}_{1,a} \qquad \mathbf{U}_{a,R}^* = \mathbf{U}_{a,R} - \alpha_{3,a}\tilde{\mathbf{r}}_3 - \alpha_3\tilde{\mathbf{r}}_{3,a}$$

Camilla Fiorini

Camilla Fiorini

Camilla Fiorini

Camilla Fiorini

Numerical Scheme without diffusion

Scheme without numerical diffusion

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Camilla Fiorini

Scheme without numerical diffusion

Step 0 : initial data discretisation

- Step 1 : solution of the Riemann problems, one for each interface
- Step 2 : definition of a staggered mesh on which the average is performed

 $\overline{x}_{j-1/2} = x_{j-1/2} + \sigma_{j-1/2} \Delta t$

Camilla Fiorini

Scheme without numerical diffusion

Step 0 : initial data discretisation

Step 1 : solution of the Riemann problems, one for each interface

Step 2 : definition of a staggered mesh on which the average is performed

Step 3 : projection on the initial mesh

$$\overline{\mathbf{U}_{j-1}} \qquad \overline{\mathbf{U}_{j}} \qquad \overline{\mathbf{U}_{j+1}}$$

$$\mathbf{U}_{j} = \begin{cases} \overline{\mathbf{U}}_{j-1} & \text{if } \alpha \in \left(0, \frac{\Delta t}{\Delta x} \max(\sigma_{j-1/2}, 0)\right), \\ \overline{\mathbf{U}}_{j} & \text{if } \alpha \in \left[\frac{\Delta t}{\Delta x} \max(\sigma_{j-1/2}, 0), 1 + \frac{\Delta t}{\Delta x} \min(\sigma_{j+1/2}, 0)\right), \\ \overline{\mathbf{U}}_{j+1} & \text{if } \alpha \in \left[1 + \frac{\Delta t}{\Delta x} \min(\sigma_{j+1/2}, 0), 1\right). \end{cases}$$

 $\alpha \sim \mathcal{U}([0,1])$

Camilla Fiorini

Numerical results

Camilla Fiorini

Numerical results

Camilla Fiorini

Sensitivity Analysis for nonlinear hyperbolic PDEs

Convergence

Camilla Fiorini

Sensitivity Analysis for nonlinear hyperbolic PDEs

Riemann problem with uncertain parameters: $\mathbf{a} = (\rho_L, \rho_R, u_L, u_R, p_L, p_R)^t$

Aim: determine a **confidence interval** $CI_X = [\mu_X - \kappa \sigma_X, \mu_X + \kappa \sigma_X]$

Monte Carlo approach: N samples X_k

$$\mu_X = \frac{1}{N} \sum_{k=1}^N X_k \qquad \sigma_X^2 = \frac{1}{N-1} \sum_{k=1}^N |\mu_X - X_k|^2$$

Sensitivity approach: state X, sensitivities X_{a_i}

$$\mu_X = X$$
 $\sigma_X^2 = \sum_{i=1}^{6} X_{a_i}^2 \sigma_{a_i}^2$

Camilla Fiorini

Camilla Fiorini

Sensitivity Analysis for nonlinear hyperbolic PDEs

Camilla Fiorini

Sensitivity Analysis for nonlinear hyperbolic PDEs

Camilla Fiorini

Sensitivity Analysis for nonlinear hyperbolic PDEs

Conclusion and future development

Conclusion:

- We defined a sensitivity system valid in case of discontinuous state
- The correction term is well defined
- The correction term is important in applications

Future development:

- Effects of the numerical diffusion for the applications
- Extension to 2D

Thank you for your attention!