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Sensitivity Analysis: study of how changes in the inputs of a model affect the outputs.
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· Parameter of interest: a,
· State: u, p,
·Model: Navier–Stokes system.

Sensitivities: ua :=
∂u
∂a

, pa :=
∂p
∂a

.

Introduction to Sensitivity Analysis



∂tu− ν∆u + (u · ∇)u +∇p = f Ω, t > 0,
∇ · u = 0 Ω, t > 0,
u(x, 0) = 0 Ω, t = 0,
u = −g(y)n on Γin,
u = 0 on Γw,
(ν∇u− pI)n = 0 on Γout.

State equations

The continuous sensitivity equation method [1] is a differentiate-then-discretise technique, which
consists in formally differentiating the state system with respect to the parameter of interest a
and then exchanging the derivatives in space and time with the ones in a. For the Navier–Stokes
equations, one obtains the following system:



∂tua− ν∆ua + (ua · ∇)u + (u · ∇)ua +∇pa = fa Ω, t > 0,
∇ · ua = 0 Ω, t > 0,
ua(x, 0) = 0 Ω, t = 0,
ua = −ga(y)n on Γin,
ua = 0 on Γw,
(ν∇ua− paI)n = −νa∇u n on Γout,

Sensitivity equations

where fa := ∂af + νa∆u.

Continuous Sensitivity Equation Method

We consider the domain Ω here below:
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with Γw := Γtop ∪ Γbottom ∪ Γobst.

The inlet velocity is g(y) =
4A
`2 y(` − y), where A is the

uncertain parameter (i.e. a = A in this test case). A is a
gaussian random variable of mean µA and variance σ2

A. Its
probability density function is plotted on the right.
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Test case

From a first order Taylor expansion, one can define the following quantity:
err(u) = u(x, T; a + δa)− u(x, T; a)− δaua(x, T; a) ' O(δa2).
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In these Figures, we show the L2

and L∞ norms of the error for each
component of the velocity. The
change in slope occurs when the
error due to the spatial discretisa-
tion becomes comparable to the
one due to the Taylor expansion
here above.

Validation

The following results are obtained with TrioCFD, using an explicit Euler scheme in time, on a mesh
with h varying between 0.002 and 0.001. To reach the steady state 35 time units were necessary.
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Numerical results

The aim is to determine a confidence interval CIX for a variable X, such that P(X ∈ CIX) ≥ 1− α.

From the Chebyshev’s inequality we have CIX =

[
µX −

σX√
α

, µX +
σX√

α

]
.

SA provides us with the following first order estimates of the mean µX and the variance σ2
X [2]

µX = X(µa), σ2
X = X2

a(µa)σ2
a ,

which require only one simulation of the state and one of the sensitivity.
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