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Abstract
This works deals with sensitivity analysis for the Navier–Stokes equations. The aim is

to provide an estimate of the variance of the velocity field when some of the parameters are
uncertain and then to use the variance to compute confidence intervals for the output of
the model. First, we introduce the physical model and analyse its stability. The sensitivity
equations are derived, and their stability analysed as well. We propose a finite element-
volume numerical scheme for the state and the sensitivity, which is integrated into the
open-source industrial code TrioCFD. Finally, we present some numerical results: a steady
and an unsteady test case for the channel flow problem are investigated. For the steady case,
we compare the results to the Monte Carlo method and show how the sensitivity analysis
technique succeeds in providing very accurate estimates of the variance. For the unsteady
case, a new filtering procedure is proposed to deal with a sensitivity that grows in time.
The filtered sensitivity is then used to compute the variance of the output and to provide
confidence intervals.

1 Introduction

Sensitivity analysis (SA) studies how changes in the input of a model affect the output, and
it is essential for many engineering applications, such as uncertainty quantification, optimal
design, and to answer what if questions, i.e. what happens to the solution of the model
if the input parameters change. These tasks can be performed in many different ways,
depending on the nature of the model considered. In this work, we consider systems that
can be modelled with partial differential equations (PDEs). The sensitivity variable itself
is defined as the derivative of the state (i.e., the output of the model) with respect to the
parameters of interest.

In the framework of PDEs, one can distinguish two main classes of methods: the
differentiate-then-discretise methods and the discretise-then-differentiate methods. As the
names say, in the first case the state model is formally differentiated with respect to the pa-
rameter of interest, providing an analytical sensitivity system which can then be discretised
with the most appropriate numerical scheme. The second class of methods swaps the two
steps which, in the general case, are not commutative. A detailed comparison between the
two classes of methods can be found in [Gun03] for optimisation problems. In this work, we
focus on the first class, and, in particular, on the continuous sensitivity equation method
[BB97, DPB06, DP06, CDF18, FCD19].

The main aim of this work is to give an estimate of the variance of the solution of
the Navier–Stokes equations when there are uncertain parameters and then to use the es-
timated variance to compute confidence intervals. This goes under the name of forward
uncertainty propagation, which is part of the broader field of uncertainty quantification
(UQ). Many strategies and techniques have been proposed in the literature to tackle UQ
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problems, particularly in the case of PDEs models: Monte Carlo method [RC13], polynomial
chaos [Wal03, XK03, KM06, DPL13], random space partition [AC13], to name but a few.
A review of these methods applied to fluid dynamics problems can be found in [WH02].

Methods of uncertainty propagation based on SA are particularly efficient in terms of
computational time if compared, for instance, to methods like Monte Carlo. However, since
SA is based on Taylor expansions of the state variable with respect to the parameter of
interest, these methods are intrinsically local [Del14] : they can be used only for random
variables with a small variance. The Monte Carlo approach does not require this assumption;
however, it is not applicable for realistic unsteady test cases in 2D and 3D, due to its high
computational cost. In this work we propose an approach based on the sensitivity equation
method: under the hypothesis of small variance of the input parameters, we can provide a
first-order estimate of the variance of the solution at a reasonable computational cost.

Two declinations of the channel flow test case (i.e. study of the flow past an obstacle)
are investigated: a steady (Re “ 25) and an unsteady (Re “ 100) test case. For the
steady test case, a detailed comparison with the Monte Carlo method is performed: the
variance of the output is first estimated using a classical Monte Carlo technique and then
with the sensitivity analysis method. The results are extremely accurate. The unsteady
test case presents a sensitivity which grows in time: this is caused by the fact that the
parameter considered has an infuence on the frequency of vortex shedding. This problem is
also described in [HEPB04] for a similar test case to the one considered here: to deal with
it, they chose a pulsating inflow velocity, which imposes the frequency of vortex shedding.
However, this choice is not suitable for all applications. Therefore we propose a new filtering
technique, which allows us to recover the periodic physical part of the sensitivity.

The main original contributions of this work are: (a), to establish the stability in the
norm L8p0, T ;L2

pΩqq XL2
p0, T ;H1

pΩqq for the state and for the sensitivity, we provide an
explicit function adapted to the specific geometry to homogenise the Dirichlet boundary
conditions (b), we detail the discretisation of the method within a finite element-volume
(FEV) framework, well adapted to the open-source industrial code TrioCFD; (c), to be able
to remove the phase dependency in the sensitivity signals in the case of pulsating flows,
typically in the Von Karman vortex street, we propose and justify a new filtering technique.
These results are also validated with a detailed comparison with Monte Carlo simulations.

The paper is organised as follows: in section 2 we present the physical model for the
state and derive the sensitivity equations. Stability estimates are provided for both the
state and the sensitivity for the prescribed boundary conditions. To do that, we introduce
a function to homogenise the Dirichlet boundary conditions: the computation of such a
function is explicit and detailed in appendix A. In section 3, we design a FEV method
for the sensitivity, which is adapted to the open-source industrial code TrioCFD [DC]. In
section 4, the code implemented for the sensitivity is rigorously validated. In section 5, we
show how the sensitivity can be used to give a first order estimate of the variance of the
model output; then the estimated variance is used to compute confidence intervals for the
output of the model. In section 6, the numerical results are presented and discussed.

2 The physical model

In this section, we present the physical model as well as some stability estimates for it and
its sensitivity.

2.1 The state equations
Let us consider the domain Ω in Figure 1: it is a channel with walls on the top and the
bottom and an obstacle of square section at distance xD from the inflow boundary. The
Navier-Stokes system and the boundary conditions for this domain are:
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Figure 1: Domain for the first test case.
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Btu´ ν∆u` pu ¨∇qu`∇p “ f Ω, t ą 0,

∇ ¨ u “ 0 Ω, t ą 0,

upx, 0q “ 0 Ω, t “ 0,

u “ ´gpyqn on Γin,

u “ 0 on Γw “ Γobst Y Γtop Y Γbottom,

pν∇u´ pIqn “ 0 on Γout,

(1)

where u “ pux, uyqt is the velocity, p is the pressure, f the external force and gpyq the
prescribed inflow condition. The first equation models the conservation of the momentum
and the second one the conservation of the mass. In the following, they will be referred to as,
respectively, the momentum equation and the mass equation. We impose no slip boundary
condition of the walls of the domain, a prescribed velocity at the inflow and a homogeneous
Neumann boundary condition at the outflow.

Remark: the outflow of the domain is not a physical boundary: the physical domain
considered is, in some sense, infinite. The outflow boundary is imposed only for numerical
computations: this means that we can always choose it far enough from the obstacle in
order to have no recirculation at the outflow and therefore u ¨ n|Γout ě 0. In [BZD00] one
can find a detailed study on the dependence of the recirculation length on Reynolds number
for a confined flow past a square obstacle. We use this condition as hypothesis to prove the
stability of the state system.

In the following proposition, we provide a stability estimate for the solution u. To
do that, we introduce a function Rg, which we use to homogenise the inflow boundary
conditions. This is also known as a lifting procedure in the mathematical literature.

Proposition 1. Let Rg be a sufficiently smooth1 stationary2 function such that ∇ ¨Rg “

0 in Ω, Rg “ u on Γin Y Γw, and ∇Rgn|Γout “ 0. Then, if u ¨ n| ě 0 on Γout and f̃ is
stationary the following stability estimate holds:

~u~2
ď }Rg}

2
` }f̃ptq}2t`KpRg, f̃qe

2t}∇Rg}L8 , (2)

where f̃ “ f ` ν∆Rg ´ pRg ¨∇qRg, and the norm ~ ¨ ~ is defined as follows:

~u~2 :“ }upT q}2 ` 2ν

ż T

0

}∇uptq}2dt.

Proof. In order to deal with the boundary terms, we start by homogenising the boundary
conditions ũ “ u ´ Rg. We have: ~u~ ď ~ũ~ ` ~Rg~, therefore, since Rg is regular,
controlling ũ is equivalent to controlling u.

1See section A for how to compute such a function.
2If the boundary conditions depend on time, Rg cannot be taken stationary.

3



The equations for ũ are:
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Btũ´ ν∆ũ` ppũ`Rgq ¨∇qũ` pũ ¨∇qRg `∇p “ f̃ Ω, t ą 0,

∇ ¨ ũ “ 0 Ω, t ą 0,

ũpx, 0q “ ´Rg Ω, t “ 0,

ũ “ 0 on Γin Y Γw,

pν∇ũ´ pIqn “ ´ν∇Rgn “ 0 on Γout.

To obtain the stability estimate, we multiply by ũ and integrate by parts:
ż

Ω

Btũ ¨ ũ` ν

ż

Ω

∇ũ : ∇ũ`

ż

Ω

rppũ`Rgq ¨∇qũs ¨ ũ`
ż

Ω

rpũ ¨∇qRgs ¨ ũ

´

ż

Γin

pν∇ũ´ pIqn ¨ ũ “

ż

Ω

f̃ ¨ ũ.

The nonlinear term can be rewritten and integrated by parts as follows:
ż

Ω

rppũ`Rgq ¨∇qũs ¨ ũ “
ż

Ω

pũ`Rgq ¨∇
ˆ

|ũ|2

2

˙

“

ż

BΩ

pũ`Rgq ¨ n
|ũ|2

2
,

where we used the second equation ∇ ¨ pũ`Rgq “ ∇ ¨u “ 0. Therefore, using the boundary
conditions, one has:

1

2

d

dt
}ũptq}2 ` ν}∇ũ}2 `

ż

Γout

pũ`Rgq ¨ n
ũ2

2
`

ż

Ω

rpũ ¨∇qRgs ¨ ũ “

ż

Ω

f̃ ¨ ũ,

where } ¨ } is the L2-norm in space.
We use the hypothesis pũ`Rgq ¨ n|Γout “ u ¨ n|Γout ě 0 to remove the integral on Γout.

Then, since Rg is regular, we have:

´

ż

Ω

rpũ ¨∇qRgs ¨ ũ ď }∇Rg}L8}ũ}
2.

Therefore, we obtain:

1

2

d

dt
}ũ}2 ` ν}∇ũ}2 ď }∇Rg}L8}ũ}

2
` }f̃}}ũ}. (3)

The rest of the proof consists of two steps: first, we prove an estimate for }ũ}; then we
substitute this results into (3) to obtain the estimate (2). To obtain an estimate for }ũ},
we start from (3), we remove the positive term ν}∇ũ}2, develop the time derivative, and
simplify }ũ}, which is positive, obtaining:

d

dt
}ũ} ď }∇Rg}L8}ũ} ` }f̃},

which can be rewritten as:

e´t}∇Rg}L8
ˆ

d

dt
}ũ} ´ }∇Rg}L8}ũ}

˙

ď e´t}∇Rg}L8 }f̃}.

We remark that the left-hand side is the time derivative of e´}∇Rg}L8 t}ũ}. We can integrate
and, if f is constant in time, we obtain:

}ũ} ď

ˆ

}ũpx, 0q} `
}f̃}

}∇Rg}L8

˙

et}∇Rg}L8

“

ˆ

}Rg} `
}f̃}

}∇Rg}L8

˙

et}∇Rg}L8
, (4)

which concludes the first step. For the second step, we start from (3) and use Young’s
inequality, obtaining:

1

2

d

dt
}ũ}2 ` ν}∇ũ}2 ď

ˆ

1

2
` }∇Rg}L8

˙

}ũ}2 `
1

2
}f̃}2.
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We multiply by 2 and use the estimate (4), obtaining:

d

dt
}ũ}2 ` 2ν}∇ũ}2 ď }f̃}2 ` p1` 2}∇Rg}L8q

ˆ

}Rg} `
}f̃}

}∇Rg}L8

˙2

e2t}∇Rg}L8 .

Finally, we can integrate in time, obtaining:

}ũ}2 ` 2ν

ż t

0

}∇ũpsq}2ds

ď }Rg}
2
` }f̃}2t` p1` 2}∇Rg}L8q

ˆ

}Rg} `
}f̃}

}∇Rg}L8

˙2
1

2}∇Rg}L8
e2t}∇Rg}L8 .

2.2 The sensitivity equations
We now consider u as a function of space, time and a scalar uncertain parameter a, u “
upx, t; aq and we write a formal Taylor expansion with respect to a:

upx, t; a` δaq “
8
ÿ

k“0

ukpx, t; aqδa
k, (5)

where u0 “ u and the coefficient uk is the k´th derivative of u with respect to a:

ukpx, t; aq :“
dk

dak
upx, t; aq,

and it is called the k´th order sensitivity. To consider more than one parameter of interest,
the sensitivity should be defined as the gradient of the state with respect to the vector of
parameters and a multi-dimensional Taylor expansion would be necessary, but this is not
treated in this work. A similar expansion can be done for the pressure p, and the data f ,
d, and g. In order to write the equations for the sensitivities, one can replace (5) into (1)
and then factorise according to the powers of δa. For k “ 0 we obtain the state system (1).
For k “ 1, we obtain the first order sensitivity equations. In this work, we consider only
first-order sensitivity and the notation u1 “ ua will be employed. This choice is common
[BB97, DPB06, DP06, CDF18, FCD19] because in most cases first order sensitivities provide
enough information. It is possible to consider higher order sensitivities if necessary, but this
is not investigated in this work. The first order sensitivity equations, referred to as the
sensitivity equations in short, are:
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’
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’

’

’

%

Btua ´ ν∆ua ` pua ¨∇qu` pu ¨∇qua `∇pa “ fa Ω, t ą 0,

∇ ¨ ua “ 0 Ω, t ą 0,

uapx, 0q “ 0 Ω, t “ 0,

ua “ ´gapyqn on Γin,

ua “ 0 on Γw,

pν∇ua ´ paIqn “ 0 on Γout,

(6)

where Γw :“ ΓobstYΓtopYΓbottom. These are known as the Oseen equations: an introduction
on the subject can be found in [Vol14], both for the theoretical and the numerical aspects.
A similar problem is investigated, although only from a numerical point of view, in [DP05,
DPB06], where they use the sensitivity for shape optimization problems: in their case an
expansion of the normal n “

ř

nkpx; aqδak is necessary, which leads to more complicated
boundary conditions. Remark: if ν is considered as the parameter of interest, the second
member of the first equation should be fa :“ fa ` νa∆u and the Neumann boundary
condition should have the additional term νa∇u n, but this case is not considered in this
work.
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We want to obtain a stability estimate for the sensitivity, similar to the one for the state
(2). To do this, we need the following hypothesis:

Dκ “ κpu,Ωq ą 0 :
ˇ

ˇ

ˇ

ˇ

ż

Ω

rpua ¨∇qus ¨ ua
ˇ

ˇ

ˇ

ˇ

ď κ}ua}
2. (7)

We remark that hypothesis (7) is trivial if the L8-norm of the gradient ∇u is controlled
(we would have κ “ }∇u}L8). However, in the time dependent case we have a control only
on

şt

0
}∇upsq}2ds, which is not sufficient. A similar hypothesis (although less restrictive

than ours) can be found in [Ray07]: in the section about linearised Navier–Stokes equations
around an instationary state, they suppose

u P L2
p0, T ;H1

pΩqq X L8p0, T ;L4
pΩqq.

From the estimate (2) and the triangular inequality we only have

u P L2
p0, T ;H1

pΩqq X L8p0, T ;L2
pΩqq.

Asking for u P L4
pΩq @t, would imply having a control on }∇u} @t, because H1

pΩq Ă L4
pΩq

in 2 dimensions (cf. Corollary 9.11 from [Bre10]).
In the following proposition, we provide a stability estimate for the sensitivity.

Proposition 2. Let Rga be a sufficiently smooth stationary function such that ∇ ¨Rga “

0 in Ω, Rga “ ua on Γin Y Γw, and ∇Rgan|Γout “ 0 Then, if u ¨ n| ě 0 on Γout and under
the hypothesis (7), the following stability estimate holds:

~ua~
2
ď }Rga}

2
` }f̃a}

2t` CpRga , f̃a, κqe
2κt, ,

where f̃a “ fa ` ν∆Rga ´ pRga ¨∇qRga .

Proof. In order to deal with the boundary terms on Γin, we start by homogenising the
boundary conditions, as we did earlier for the state equations. We define a new variable
ũa “ ua ´Rga . The new variable ũa verifies the following equations:
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’

%

Btũa ´ ν∆ũa ` pũa ¨∇qu` pu ¨∇qũa `∇pa “ f̃a Ω, t ą 0,

∇ ¨ ũa “ 0 Ω, t ą 0,

ũapx, 0q “ ´Rga Ω, t “ 0,

ũa “ 0 on Γin Y Γw

pν∇ũa ´ paIqn “ ´ν∇Rgan “ 0 on Γout.

We can multiply by ua and integrate by parts as done for the state, and we obtain:

1

2

d

dt
}ũa}

2
` ν}∇ũa}

2
`

ż

Ω

rpũa ¨∇qus ¨ ũa `
ż

Ω

rpu ¨∇qũas ¨ ũa “
ż

Ω

faua. (8)

All the integrals on the boundary are zero thanks to the boundary conditions. For the first
integral, we use hypothesis (7) and obtain

ż

Ω

rpua ¨∇qus ¨ ua ě ´κ}ua}2. (9)

The second integral can be treated as we did for the nonlinear term of the state, obtaining:
ż

Ω

rpu ¨∇qũas ¨ ũa “
ż

Ω

u ¨∇
ˆ

|ũa|
2

2

˙

“

ż

Γout

u ¨ n
|ua|

2

2
ě 0. (10)

By plugging (9) and (10) into (8), we have:

1

2

d

dt
}ũa}

2
` ν}∇ũa}

2
ď κ}ũa}

2
` }f̃a}}ũa},

which has exactly the same structure of (3). Therefore, using the same technique, we obtain:

}ũa}
2
` 2ν

ż t

0

}∇ũapsq}
2ds ď }Rga}

2
` }f̃a}

2t`
1` 2κ

2κ

ˆ

}Rga} `
}f̃a}

κ

˙2

e2κt.
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3 Numerical schemes

In order to discretise the systems (1) and (6), we use a finite element-volume (FEV) method
in space and forward Euler in time. For more details about FEV, cf. [Emo92, Hei03,
APFC17, ABF15]. The numerical schemes described below are implemented in the industrial
open source code TRUST TrioCFD [DC].

3.1 Spatial discretisation
Here, we recall the main ideas of the FEV method for the state and we adapt it to the
sensitivity equations. For this purpose, in this subsection we only consider the spatial part
of the systems (1) and (6) (i.e. Btu “ Btua “ 0). Let ΓD “ Γin Y Γw be the Dirichlet
boundary and ΓN “ Γout the Neumann boundary. Let Th be a triangulation of the domain
Ω compatible with the boundary conditions, and Kj P Th a triangle (j “ 1, . . . , NT ): a
triangulation is said to be compatible with the boundary conditions when, if a triangle Kj

has a side on the boundary, than that side belongs entirely to ΓD or entirely to ΓN . We
denote with xi the nodes (i “ 1, . . . , NN ), which are the middle points of the edges of the
triangles. A control volume ωi is associated with each node (cf. Figure 2 for the definition
of ωi).

We introduce the following spaces:

Qh “ tqh : @K P Th, qh|K P P0pKqu,

Vh “ twh continuous at xi : @K P Th, wh|K P P1pKqu,

Vh “ twh “ pw
x, wyqt : wx, wy P Vhu “ V 2

h .

The space Qh is spanned by the indicator functions of the triangles, χK , and Vh is spanned
by ϕipxq, with ϕi P Vh and ϕipxjq “ δij . We look for an approximate solution for the
systems (1) and (6), respectively puh, phq P Vh ˆQh and pua,h, pa,hq P Vh ˆQh. The two
components of the discrete velocity field and its sensitivity will be denoted uh “ pu

x
h, u

y
hq
t

and ua,h “ pu
x
a,h, u

y
a,hq

t.
In order to have a discrete formulation, we integrate the mass equation and its sensitiv-

ity over the triangles Kj and the momentum equation and its sensitivity over the control
volumes ωi:

ż

BKjzΓD

uh ¨ n “

ż

BKjXΓin

g @Kj P Th,

´

ż

BωizΓN

pν∇uh ´ phIqn`

ż

BωizΓD

puh b uhqn “

“

ż

ωi

f ´

ż

BωiXΓin

pgnb gnqn

@ωi,

ż

BKjzΓD

ua,h ¨ n “

ż

BKjXΓin

ga @Kj P Th,

´

ż

BωizΓN

pν∇ua,h ´ pa,hIqn`

ż

BωizΓD

pua,h b uh ` uh b ua,hqn “

“

ż

ωi

fa ´

ż

BωiXΓin

pganb gn` gnb ganqn

@ωi.

(11)

Then, one can expand puh, phq and pua,h, pa,hq in the bases of the correspondent spaces as
follows:

uhpxq “

NN
ÿ

i“1

uhpxiqϕipxq, phpxq “

NT
ÿ

j“1

phpKjqχKj ,

ua,hpxq “

NN
ÿ

i“1

ua,hpxiqϕipxq, pa,hpxq “

NT
ÿ

j“1

pa,hpKjqχKj .

(12)

We divide the nodes into two sets: the Dirichlet nodes D :“ ti : xi P ΓDu and all the other
nodes which are referred to as the internal nodes I :“ ti : xi P ΩY ΓNu. By plugging (12)
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into (11) for the linear terms and using the identity pa b bqc “ apb ¨ cq for the nonlinear
terms, we have:

$

’

’

’

’

’

’
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’

’

%

ÿ

iPI
uhpxiq ¨

ż

BKjzΓD

ϕin “

ż

BKjXΓin

g @Kj P Th,

´
ÿ

jPI

ż

BωizΓN

pνuhpxjq b∇ϕjqn`
NT
ÿ

j“1

phpKjq

ż

Bωi

χKjn

`

ż

BωizΓD

uhpuh ¨ nq “

ż

ωi

f ´

ż

BωiXΓin

g2n

@ωi,

ÿ

iPI
ua,hpxiq ¨

ż

BKjzΓD

ϕin “

ż

BKjXΓin

ga @Kj P Th,

´
ÿ

jPI

ż

BωizΓN

pνua,hpxjq b∇ϕjqn`
NT
ÿ

j“1

pa,hpKjq

ż

Bωi

χKjn

`

ż

BωizΓD

ua,hpuh ¨ nq ` uhpua,h ¨ nq “

ż

ωi

fa ´ 2

ż

BωiXΓin

ggan

@ωi,

(13)

We can define the vectors of unknowns as follows:

Uh “ ruxhpxiqsiPI , Vh “ ruyhpxiqsiPI , Ph “ rphpKjqsj“1,...,NT , Uh “

„

Uh
Vh



,

Ua,h “ ruxa,hpxiqsiPI , Va,h “ ruya,hpxiqsiPI Pa,h “ rpa,hpKjqsj“1,...,NT , Ua,h “

„

Ua,h
Va,h



.

We introduce the following vectors:

F `i “

ż

ωi

f ` ´

ż

BωiXΓin

g2n` Di “

ż

BKiXΓin

g,

F `a i “

ż

ωi

f `a ´ 2

ż

BωiXΓin

ggan
` Da i “

ż

BKiXΓin

ga,

and the following matrices:

Ãi,j :“ ´

ż

BωizΓN

ν∇ϕj ¨ n B`i,j :“

ż

BKjzΓD

ϕin
` C`i,j :“

ż

BωizΓN

χKjn
`

where the superscript ` “ x, y indicates the x´ and y´ components of the normal vector
n “ pnx, nyq, of the state source term f “ pfx, fyq, and of the sensitivity source term
fa “ pf

x
a , f

y
a q.

For the convection terms, an upwind-type approach is applied: for each edge of Bωi, uh ¨n
is computed and, according to its sign, it is multiplied by either uhpxiq or uhpxkq, where ωk
is the control volume adjacent to the considered edge. We remark that using an upwind-type
scheme leads to a CFL condition [CFL67] on the time step ∆t when considering the time
discretisation: this CFL condition is the same for the state and the sensitivity equations
because the transport speed in both equations is u.

For the sake of having a more compact and readable notation, we define x˚ as follows:

x˚ “

#

xi if uh ¨ ni ą 0 on Bωi X Bωk,
xk otherwise,

which truly depends on xi, xk and uh, but we use a simplified notation. The context will
make it non ambiguous. In the same way, we can define xa˚ according to the sign of ua,h ¨n.
Therefore, for the convection term in the state equation, we can write:

ż

Bωi

uhpuh ¨ nq «

ż

Bωi

uhpx˚qpuh ¨ nq “

ż

Bωi

uhpx˚q

˜

ÿ

jPI
uhpxjqϕj ¨ n

¸

.
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We consider the first component of the vector here above:

ż

Bωi

uxhpx˚q

˜

ÿ

jPI
uhpxjqϕj ¨ n

¸

“

“
ÿ

jPI
uxhpxjq

ż

Bωi

uxhpx˚qϕjn
x
`

ÿ

jPI
uyhpxjq

ż

Bωi

uxhpx˚qϕjn
y.

We can define the following matrices:

Lxi,jpUhq “
ż

Bωi

uxhpx˚qϕjn
x, Lyi,jpUhq “

ż

Bωi

uxhpx˚qϕjn
y.

The second component would give as a result Lxi,jpVhq and Lyi,jpVhq. Concerning the sensi-
tivity, doing the same computations would lead to eight matrices, four of them identical to
the ones introduced for the state, and four others as follows:

Lxa i,jpUa,hq “
ż

Bωi

uxa,hpxa˚qϕjn
x, Lya i,jpUa,hq “

ż

Bωi

uxa,hpxa˚qϕjn
y

Lxa i,jpVa,hq “
ż

Bωi

uya,hpxa˚qϕjn
x, Lya i,jpVa,hq “

ż

Bωi

uya,hpxa˚qϕjn
y

Finally, by introducing the following notation:

A “

ˆ

Ã 0

0 Ã

˙

, B “
`

Bx By
˘

, C “

ˆ

Cx

Cy

˙

, F “

ˆ

F x

F y

˙

, Fa “

ˆ

F xa
F ya

˙

,

LpUhq “

ˆ

LxpUhq LypUhq
LxpVhq LypVhq

˙

, LapUa,hq “

ˆ

LxapUa,hq LyapUa,hq
LxapVa,hq LyapVa,hq

˙

,

and observing that C “ Bt, the discrete system can be written in the compact form:
$

’

’

’

&

’

’

’

%

AUh `B
tPh ` LpUhqUh “ F,

BUh “ D,

AUa,h `B
tPa,h ` LapUa,hqUh ` LpUhqUa,h “ Fa,

BUa,h “ Da.

The first two equations correspond to the state system, and are independent of the last
two: the first one is the discretisation of the momentum equation and the second one is
the discretisation of the mass equation ∇ ¨ u “ 0, where the vector D accounts for the
Dirichlet boundary conditions. The last two equations correspond to the sensitivity and,
in particular, the first of these depends on the solution of the state through the convective
matrix LpUhq.

3.2 Time discretisation
For the time scheme, we use a forward Euler discretisation [QSS10] with an implicit treat-
ment of the diffusion operator: an explicit treatment would require a very restrictive time
step for stability. Let tn be the n´th time step, which is computed according to the CFL
condition [CFL67], and let Un

h (respectively Un
a,h) be an approximation of upx, tnq (re-

spectively, uapx, tnq). By coupling this with the spatial scheme described in the previous
subsection, we obtain the following system:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

M
Un`1
h ´Un

h

∆t
`AUn`1

h `BtPn`1
h ` LpUn

hqU
n
h “ Fn,

BUn`1
h “ Dn,

M
Un`1
a,h ´Un

a,h

∆t
`AUn`1

a,h `B
tPn`1

a,h ` LapU
n
a,hqU

n
h ` LpU

n
hqU

n
a,h “ Fna ,

BUn`1
a,h “ Dn

a ,

(14)
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C`

Cj

‚

‚

xi‚

‚

‚

K`

Kj

ωi

Figure 2: The control volume ωi associated with the node xi is shaded in blue. Cj and C` are
the centres of gravity of the two triangles Kj and K` adjacent to the edge on which xi lies.

where M is the mass matrix with coefficients Mi,j “
ş

ωi
ϕj . To improve the efficiency

in the computations, M is lumped, i.e. it is approximated with a diagonal matrix whose
coefficients are |ωi|δi,j . The system (14) is solved with a prediction correction procedure
[Cho68, Tem68, APFC17]. First, an intermediate speed U˚

h and its sensitivity U˚
a,h (which

are not solenoidal) are computed by solving the following systems:

pI `∆tM´1AqU˚
h “ Un

h ´∆tM´1
pLpUn

hqU
n
h `B

tPn
h ´ F

n
q,

pI `∆tM´1AqU˚
a,h “ Un

a,h ´∆tM´1
pLapU

n
a,hqU

n
h ` LpU

n
hqU

n
a,h `B

tPn
a,h ´ F

n
a q.

Then, we perform the correction step:

Un`1
h “ U˚

h `∆tM´1BtpPn`1
h ´Pn

hq,

Un`1
a,h “ U˚

a,h `∆tM´1BtpPn`1
a,h ´Pn

a,hq.
(15)

Finally, by left multiplying by B and imposing the second and fourth equation of (14), one
obtains:

BM´1BtPn`1
h “ BM´1BtPn

h `
Dn`1

´BU˚
h

∆t
,

BM´1BtPn`1
a,h “ BM´1BtPn

a,h `
Dn`1
a ´BU˚

a,h

∆t
,

(16)

and Pn`1
h and Pn`1

a,h can be used to compute Un`1
h and Un`1

a,h from (15). We remark that
in order to solve the pressure problem (16), some technical discrete boundary conditions
for the pressure are needed. To do this, in the code TrioCFD [DC] the Neumann boundary
condition is split into two parts: the pressure and the gradient of the velocity are set to zero
independently of each other.

4 Validation of the implementation of the sensitivity
equation

In order to validate the sensitivity equation method, we consider the following Taylor ex-
pansion:

upx, T ; a` δaq “ upx, T ; aq ` δauapx, T ; aq `Opδa2
q,

10
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Figure 3: Convergence of the SE method. The symbol ˝ corresponds to the finer mesh (h “
0.001), the symbol ‚ to the coarser one (h “ 0.002).

and we define the following quantity:

errpuq “ upx, T ; a` δaq ´ upx, T ; aq ´ δauapx, T ; aq.

If the sensitivity equation are correctly solved, one should have errpuq “ Opδa2
q. We

considered a straightforward test case: a channel as the one in Figure 1 but without the
obstacle and with a parabolic velocity profile imposed at the inlet:

gpyq “
4A

`2
yp`´ yq

The maximal value of the velocity at the inlet is the parameter of interest a (i.e. a “ A).
We solved this on two Cartesian grids with h “ 0.001 and h “ 0.002. In Figure 3, we
show the L2 and L8 norms for the two components of the velocity on the two different
meshes: for larger δa we observe the expected convergence rate, but starting at δa » 0.05
the curve flattens (especially the ones corresponding to the horizontal component of the
velocity). This is due to the fact that the quantity shown is errpuhq and not errpuq: the
spatial discretisation is an additional source of error, and this part of the error is constant
for a given mesh, therefore the curve tend to a plateau. The plateau value is smaller for
finer meshes, as one can observe in Figure 3.

5 Uncertainty propagation

In this section, we want to show how the sensitivity can be used to give a first order estimate
of the variance of the model output. In this context, the parameter a is a random variable
with a known distribution, expected value µa, and variance σ2

a. Let Xpx, t; aq be a physical
variable (i.e. the horizontal or vertical velocity, or the pressure), whose expected value µX
and variance σ2

X we want to estimate. To do this, we start from a Taylor expansion of X
with respect to the parameter a centred in the expected value of a, µa:

Xpx, t; aq “ Xpx, t;µaq ` pa´ µaqXapx, t; aq ` op|a´ µa|
2
q, (17)

where Xa “ BaX is the sensitivity of X with respect to the parameter a. Computing the
expected value of the right and left-hand side of (17), one obtains the following first order
estimate:

µXpx, tq “ ErXpx, t; aqs » Xpx, t;µaq ` Erpa´ µaqsXapx, t; aq “ Xpx, t;µaq. (18)
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parameter ` L xD d
value 0.7 2 0.4 0.1

Table 1: Values of the domain parameters used in simulations.

Using again the Taylor expansion (17) and the estimate just obtained for the average (18),
we obtain an estimate of the variance:

σ2
Xpx, tq “ ErpXpx, t; aq ´ µXpx, tqq

2
s » Erpa´ µaq

2
sX2

apx, t; aq “ σ2
aX

2
apx, t; aq. (19)

The estimates (18)-(19) are valid only where the Taylor expansion (17) holds, i.e. for small
variances of the random parameter σ2

a. However, one can have an estimate of the variance
with just one simulation of the state and one of the sensitivity, which is a minimal com-
putational cost when compared to methods such as Monte Carlo that require thousands
of simulations of the state to estimate the variance. In the general case, when more than
one parameter is uncertain, to provide an estimate of the variance, one would need one
simulation for the state and as many simulations of the sensitivity as the number of uncer-
tain parameters [Fio18]. This makes the sensitivity approach really affordable and highly
competitive when the number of uncertain parameters is small enough. In the next subsec-
tion, we compare the results of the SA approach with the well-known Monte Carlo method
[RC13].

The estimated variance can be used for multiple purposes. In this work, we use it to
compute some confidence intervals for the physical variables, i.e. find an interval CIX such
that the probability that X falls into CIX is bigger that 1´ α. Standard choices for α are
0.05 or 0.01. If the distribution of the random variable X is known, some precise estimates
for the extrema of the interval exist. However, SA does not provide any insight of what the
distribution of the output is. Therefore we start from Chebyshev inequality [JP12], which
states that for any random variable with finite expected value and variance

P p|X ´ µX | ě λq ď
σ2
X

λ2
.

By imposing the desired level for confidence interval, i.e. α “
σ2
X
λ2 , one gets λ “ σX?

α
,

therefore
CIX “

„

µX ´
σX
?
α
, µX `

σX
?
α



. (20)

6 Numerical results

The domain used for the numerical simulations is the one in Figure 1, and the values of the
parameters are the ones in Table 1. The equations are solved on the mesh with a spatial step
varying from 0.005 to 0.01. Finally, we consider the following parabolic inflow condition:

gpyq “
4A

`2
ypy ´ `q, (21)

where A is the maximal value of the inflow velocity, and it is the uncertain parameter (i.e.
a “ A). A is a Gaussian random variable of average µA and variance σ2

A.

6.1 Steady test case
For this first test case, we consider a small inflow velocity, µA “ 0.25, which corresponds to
Re “ 25 and leads to a stationary solution. The probability density function of A is shown
in Figure 4: the standard deviation σA “ 7.5ˆ10´3 is small enough to apply the sensitivity
method described above to compute the variance of the output.

In Figure 5, we show the numerical results for the horizontal velocity and its sensitivity.
For this test case, we were able to make a Monte Carlo approach as well: 1300 simulations

12
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Figure 4: Probability density function of the uncertain parameter A.
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Figure 5: Results for Re “ 25.
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Figure 6: Standard deviation on the horizontal cross section y “ 0.2. Comparison between
Monte Carlo (MC) and the SA estimate.
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Figure 7: Standard deviation on the vertical cross section x “ 1. Comparison between Monte
Carlo and the SA estimate.

of the state were necessary. In Figures 6-7, we compare the variance estimated using the
sensitivities and the one computed with Monte Carlo on two cross sections of the domain.
As one can see, the two strategies give very similar results. In Figures 8-9, we show the
confidence intervals computed according to (20) for α “ 0.05: in blue the confidence intervals
are obtained with the average and variance estimated with SA, in red with Monte Carlo.

For this test case, the first order approximations provided by the SA are more than
satisfactory: with only two simulations, we obtain results comparable to the ones obtained
with the Monte Carlo approach, which requires 1300 simulations.

6.2 Unsteady test case
We now consider a case with a higher Reynolds number (Re “ 100, which corresponds to
µA “ 1); thus, we are in the range in which a Von Karman vortex street occurs. In this
situation, it is reasonable to assume that the velocity behaves as follows:

upx, t; aq »
N
ÿ

k“0

u0,kpx; aq cospωkpaqtq. (22)
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Figure 8: Confidence intervals on the horizontal cross section y “ 0.2, with α “ 0.05. Comparison
between Monte Carlo and the SA approaches.
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Figure 9: Confidence intervals on the vertical cross section x “ 1, with α “ 0.05. Comparison
between Monte Carlo and the SA approaches.
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Figure 10: Velocity field in three different points of the domain with respect to time.
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Figure 11: Sensitivity of the velocity field in three different points of the domain with respect to
time.

We remark that (22) does not solve (1) exactly: some terms have been neglected. Although,
from physical knowledge of the phenomenon and looking at numerical results downstream
to the obstacle, we can say that the hypothesis (22) is reasonable and that N can be as
small as 2 or 3.

To simulate this test case, we use the following procedure: first, we simulate the state
until it reaches a periodic solution of the form (22); then, this state is injected into the
sensitivity equations and the sensitivity simulation is run.

We remark that by differentiating (22) with respect to the parameter a, one obtains the
following behaviour for the sensitivity:

uapx, t; aq “
N
ÿ

k“0

u0,a,kpx; aq cospωkpaqtq ´ t
N
ÿ

k“0

u0,kpx; aqω1kpaq sinpωkpaqtq. (23)

We can distinguish two contributions: the first sum corresponds to the influence that the
input parameter a has on the amplitude of the oscillations u0,k, the second sum corresponds
to the influence on the the frequency ωpaq. The second effect leads to a sensitivity that
grows linearly in time and difficult to work with. This problem is described in [HEPB04]
for a similar test case: to deal with it, they chose a pulsating inflow velocity, which imposes
the frequency of vortex shedding (i.e. ωk does not depend on a). However, this choice is
not suitable for all applications. This is why, in the next subsection, we propose a filter to
recover the first part of the sensitivity (23).

In Figures 10-11, we show the state and sensitivity in different points of the domain: as
one can see, hypotheses (22) and (23) are verified.
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Figure 12: Fourier transform of the velocity in three different points. Top row: horizontal
component. Bottom row: vertical component.

6.2.1 Filter

In this subsection, we propose a filter to recover the bounded part of the sensitivity

hpx, t; aq :“
N
ÿ

k“0

u0,a,kpx; aq cospωkpaqtq.

To the best of our knowledge, this is the first work in which a filtering procedure is proposed
in this context. We focus on this part of the sensitivity because, for industrial applications,
the variance of the amplitude of the oscillations is more interesting than the variance of
their phase.

We suppose that the ratio between the ωk is rational, i.e. that the state (22) and h are
periodic in time. By computing the discrete Fourier transform of the state we can see that
not only this is true, but also that we have a fundamental frequency ω and then multiples
of that, 2ω, 3ω. In Figure 12, only the second harmonic 2ω is visible. One can identify the
period T of the state using the Fourier transform, and therefore @t the following equality
holds:

ż t

t´T

uapx, s; aq

s
ds “

ż t

t´T

hpx, s; aq

s
ds “: Iptq. (24)

The left-hand side of (24) can be computed numerically. To obtain hpx, t; aq, one can
compute the derivative of Iptq and use the fact that h is T -periodic in time:

dI
dt
“

hpx, t; aq

t
´

hpx, t; aq

T ´ t
, (25)

and finally one has

hpx, t; aq “
tpT ´ tq

T

dI
dt
.

The derivative (25) can be computed numerically by finite differences. In Figure 13, we
applied the filter just described to a case where ua and h are known analytically: as one
can see in the left Figure, the filter precision degrades with time. However, since we know
that h is periodic, one can consider the first period and repeat it, which is what is shown
in the right Figure. Of course, this leads to a small jump where the two periods are glued
together.
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Figure 13: Filter applied to an analytical case.

We remark that this filter could be build on multiple periods as well. However, some
considerations on the computational costs are necessary: in order to filter on N periods, one
has to run the simulation for at least N `1 periods. We tested the filter on multiple periods
and the differences observed do not justify the additional computational cost for this test
case. The following results are obtained using a one-period filter.

In Figure 14, we show the results of the filter applied to the sensitivities shown previ-
ously (Figures 10-11). The sensitivities obtained in this way can now be used for different
applications such as, for instance, the computation of a confidence interval as done in the
previous section (cf. Figure 15). However, one must be careful, as the filtered sensitivities
take into account only the variance of the amplitude of the oscillations and not the variance
of the frequency.

7 Conclusion

In this paper, we propose an efficient computational strategy to deal with problems of
uncertainty propagation for the Navier–Stokes equations. First, the state equations are
presented, and the sensitivity equations are derived according to the continuous sensitivity
equation method. Stability estimates in L8p0, T ;L2

pΩqqXL2
p0, T ;H1

pΩqq for both the state
and the sensitivity are rigorously proven. We homogenise the Dirichlet inflow boundary
conditions using an auxiliary function which is explicitly computed. A FEV numerical
scheme is designed for the sensitivity and implemented in the open-source code TrioCFD.
A classical test case of flow past a square-section cylinder is investigated in two different
regimes: a steady case (Re “ 25) and a Karman vortex street (Re “ 100). For both cases,
the sensitivity is used to estimate the variance of the velocity field, and 95% confidence
intervals are computed. In the steady case, a detailed comparison with a Monte Carlo
method is performed: the results of the sensitivity based method are extremely accurate,
and the computational gain is significant. The unsteady test case raises an issue: due to
the periodic nature of the velocity, the sensitivity grows in time and is therefore unusable.
We propose a new procedure, which consists in filtering the different contributions to the
sensitivity in order to recover its physical parts. The filtered sensitivity is then used to
compute the confidence intervals.

Questions such as the investigation of different parameters of interest, 3´dimensional
computations, the addition of the energy equation to deal with the temperature and the
extension to the unsteady Reynolds-Averaged Navier–Stokes (URANS) equations for the
study of turbulent flows will be addressed in future works, to tackle more realistic problems.
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Figure 14: Filter applied to the sensitivity of the velocity in three different points of the domain.
Top row: horizontal component. Bottom row: vertical component.
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Figure 15: Confidence intervals (α “ 0.05) for the velocity in three different points of the domain.
Top row: horizontal component. Bottom row: vertical component.
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Appendix

A Computation of the auxiliary function Rgpx, yq

We need a vector field Rgpx, yq “ pR
x
g px, yq, R

y
gpx, yqq

t which is solenoidal, smooth enough
(at least continuous with ∇Rg P L

8
pΩq) and equal to u on the Dirichlet boundary, i.e. on

Γin Y Γw. The same can be done for ua, in particular, for the inflow boundary condition
used in this work (21).

First of all, one needs to define a function gF pyq with the following properties:

gF p0q “ gF p`q “ 0,

gF pyq “ 0 @y P

„

`´ d

2
,
`` d

2



, (26)

gF P C
0
r0, `s, BygF P L

8
r0, `s

ż `

0

gF pyqdy “

ż `

0

gpyqdy. (27)

This is easy and a function with these properties will be specified later. Let Hpxq be a C2

function such that

Hp0q “ 1, Hpxq “ 0 @x P rxD, Ls, H1p0q “ H1pxDq “ 0.

Many different options are possible for Hpxq. Let Gpyq (respectively GF pyq) be a primitive
of gpyq (respectively gF pyq):

Gpyq “

ż y

0

gpsqds GF pyq “

ż y

0

gF psqds. (28)

Proposition 3. The following vector field is solenoidal, continuous and equals u at the
boundary:

Rxg px, yq “ gpyqHpxq ` gF pyqp1´Hpxqq Rygpx, yq “ ´H1pxqpGpyq ´GF pyqq.

Furthermore, ∇Rg P L
8
pΩq and ∇Rgn|Γout “ 0.

Proof. (i) The field is solenoidal:

∇ ¨Rg “ BxR
x
g ` ByR

y
g “ gpyqH1pxq ´ gFH1pxq ´H1pxqpgpyq ´ gF pyqq “ 0.

(ii) The field is continuous because each component is a product and sum of continuous
functions.

(iii) The field equals u on ΓD.

(a) The x component of u is equal to gpyq on Γin and zero on ΓDzΓin. On Γin, we
have:

Rxg p0, yq “ gpyqHp0q ` gF pyqp1´Hp0qq “ gpyq,

because Hp0q “ 1. On Γtop and Γbottom,

Rxg p`, yq “ Rxg p0, yq “ 0

because gp0q “ gp`q “ 0 and gF p0q “ gF p`q “ 0. Finally, on the obstacle we have

Rxg px, yq “ gF pyq,

which is zero @y P
“

`´d
2
, ``d

2

‰

thanks to property (26).
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(b) The y component of u is zero on ΓD. On Γin we have

Rygp0, yq “ 0,

because H1p0q “ 0. On the bottom wall y “ 0, we have

Rygpx, 0q “ ´H1pxqpGp0q ´GF p0qq “ 0,

because Gp0q “ GF p0q “ 0, from (28). On the top wall y “ `:

Rygpx, `q “ 0,

because Gp`q “ GF p`q thanks to the property (27). Finally, on the obstacle we
have

Rygpx, yq “ 0,

because H1pxq “ 0@x P rxD, Ls.

(iv) ∇Rg P L
8
pΩq and ∇Rgn|Γout “ 0. The gradient of Rg is the following:

∇Rgpx, yq “

„

H1pxqpgpyq ´ gF pyqq pg1pyq ´ g1F pyqqHpxq ` g1F pyq
´H2pxqpGpyq ´GF pyqq ´H1pxqpgpyq ´ gF pyqq



(29)

which is in L8pΩq thanks to the hypotheses of regularity of H and gF . Finally, on the
outflow boundary the normal is n “ p1, 0qt. If we evaluate (29) on Γout, i.e. x “ L,
we have:

∇RgpL, yq “

„

0 g1F pyq
0 0



,

and therefore ∇Rgn|Γout “ 0.

Example of an auxiliary function for the state
Let g and its primitive G be the following functions:

gpyq “ yp`´ yq, Gpyq “
`

2
y2
´

1

3
y3.

Then, we can define the function gF as follows:

gF pyq “

$

’

&

’

%

ky
`

`´d
2
´ y

˘

y P
“

0, `´d
2

˘

,

0 y P
“

`´d
2
, ``d

2

‰

,

kp`´ yq
`

y ´ ``d
2

˘

y P
`

``d
2
, `
‰

,

where k is chosen in order to respect the property (27) and it is k “
4`3

p`´ dq3
. The primitive

GF is:

GF pyq “

$

’

’

&

’

’

%

k `´d
4
y2
´ k y

3

3
y P

“

0, `´d
2

˘

,
`

12
y P

“

`´d
2
, ``d

2

‰

,
`

12
´ k

´

y3

3
´ 3``d

4
y2
`

`p``dq
2

y
¯

´ k
`

``d
2

˘2 ` d´5`
12

˘

y P
`

``d
2
, `
‰

.

Finally, we chose the following function for Hpxq:

Hpxq “

$

&

%

2
´

x
xD

¯3

´ 3
´

x
xD

¯2

` 1 x P r0, xDs,

0 x P pxD, Ls,

which has all the required properties. The auxiliary function just computed is shown in
Figure 16. Figure 17 shows the two components of Rg, Rxg and Ryg .
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Figure 16: Solenoidal field from the example.

Figure 17: Solenoidal field from the example, x and y components.
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