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Abstract
The continuous sensitivity equation method allows to quan-
tify how changes in the input of a partial differential equation
(PDE) model affect the outputs, by solving additional PDEs
obtained by differentiating the model. However, this method
cannot be used directly in the framework of hyperbolic PDE
systems with discontinuous solution, because it yields Dirac
delta functions in the sensitivity solution at the location of state
discontinuities. This difficulty is well known from theoretical
viewpoint, but only a few works can be found in the litera-
ture regarding the possible numerical treatment. Therefore, we
investigate in this study how classical numerical schemes for
compressible Euler equations can be modified to account for
shocks when computing the sensitivity solution. In particu-
lar, we propose the introduction of a source term, that allows
to remove the spikes associated to the Dirac delta functions
in the numerical solution. Numerical studies exhibit a strong
impact of the numerical diffusion on the accuracy of this
strategy. Therefore, we propose an anti-diffusive numerical
scheme coupled with the approximate Riemann solver of Roe
for the state problem. For the sensitivity problem, two different
numerical schemes are implemented and compared: one which
takes into account the contact wave and another that neglects
it. The effects of the numerical diffusion on the convergence
of the schemes with respect to the grid are discussed. Finally,
an application to uncertainty propagation is investigated and
the different numerical schemes are compared.
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1 INTRODUCTION

The study of how changes in the inputs of a model affect the outputs is critical for several engineering
processes, such as design optimization or uncertainty quantification (UQ). This task is usually referred
as sensitivity analysis (SA) and can be done in many ways, depending on the nature of the model, the
amplitude of the perturbations considered, their deterministic or stochastic nature, and so forth [1]. In
the present work, we consider only systems governed be partial differential equations (PDEs) and we
focus on the estimation of the derivative of the PDE solution with respect to an input parameter. This
approach is intrinsically local and only makes sense for perturbations of small amplitude, especially
for highly nonlinear models. The estimation of the derivative is achieved by solving a set of additional
PDEs obtained by differentiating the original PDE model with respect to a single input parameter of
interest. This approach is referred as the sensitivity equation method for PDE models [2], and is closely
related to the linear perturbation method [1].

In the specific case of PDE models, there are two main classes of methods to compute the sensitivi-
ties: the discretize-then-differentiate approach and the differentiate-then-discretize one. Both strategies
have advantages and disadvantages and both are valid and are suitable for different applications. The
differentiate-then-discretize approach is usually considered as more flexible, because it does not require
the knowledge of how the original PDE model is solved, and is qualified as nonintrusive. On the con-
trary, the discretize-then-differentiate approach necessitates the knowledge of the discretized equations,
but yields a set of consistent derivatives. A detailed comparison between the two for optimization
problems is done in [3]. In this work, we focus on the differentiate-then-discretize approach, referred
in this context as the continuous sensitivity equation (CSE) method [2, 4–6]. Therefore, the sensitiv-
ity equations are obtained by formally differentiating the PDE model with respect to the parameter of
interest, and then by exchanging the derivatives with respect to the parameter with the ones in space
and time, yielding a new system of PDEs that should be discretized and solved numerically.

However, this method works only under certain assumptions of regularity of the state solution,
which may not be verified in the hyperbolic framework. In fact, if this technique is directly applied
to hyperbolic equations in case of discontinuous solutions, Dirac delta functions will appear in the
sensitivity. This question has been explored in [7, 8] with a theoretical viewpoint, and more recently
in [9–11] with a numerical viewpoint. While some authors have adapted their numerical strategies to
handle the Dirac delta functions in the solution [12–14], others have proposed a modification of the
sensitivity system to “remove” the spikes from the numerical sensitivity solution [10, 11], while main-
taining the original solution in the regular regions. This is mainly motivated by the observation that
the spikes can difficultly be seized numerically, even if they are physical, and do not interact well with
classical numerical Schemes [8, 15, 16]. We already contributed to these investigations, in particular
in the context of the barotropic Euler system in Lagrangian coordinates, that is, the p-system [9]. In
this paper, we extend the proposed methodology to the complete compressible Euler system. First, to
remove the barotropic condition the additional energy equation must be considered, and this leads to
the presence of a third wave, which is a contact discontinuity. Second, in Lagrangian coordinates the
sign of the speed of the waves is known, which is not the case in Eulerian coordinates. These facts
lead to a slightly more complicated design of the numerical schemes. Numerical results show that the
numerical diffusion plays an important role in this framework, so particular attention is given to the
design of anti-diffusive numerical schemes. Finally, another objective of this paper is to investigate,
for a simple problem of uncertainty propagation, the impact of removing the spikes in the sensitivity
solution and compare the different schemes designed in this context.

The paper is organized as follows: in the first sections, we introduce the state equations and derive
the sensitivity equations. Then, the modification of the sensitivity equations to account for the Dirac
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delta functions is presented and the new sensitivity system is introduced. Next, we detail the exact res-
olution of the Riemann problem for the state and sensitivity in a specific case, known as the Sod shock
tube problem. Some diffusive and anti-diffusive numerical schemes are illustrated: in particular, for
the state a Roe Riemann solver is proposed, and two different schemes are designed for the sensitivity.
Some numerical convergence tests are conducted, which exhibit grid-convergence issues of the diffu-
sive schemes and a faster convergence for the anti-diffusive ones. Finally, an UQ problem is defined
and the results of the diffusive and anti-diffusive, with and without correction term, are compared with
the results of the Monte Carlo method.

1.1 The state system

The Euler system writes: ⎧⎪⎨⎪⎩
𝜕t𝜌 + 𝜕x(𝜌u) = 0,

𝜕t(𝜌u) + 𝜕x(𝜌u2 + p) = 0,

𝜕t(𝜌E) + 𝜕x(u(𝜌E + p)) = 0,

(1)

where 𝜌 is the density, u is the velocity, 𝜌E the total energy per volume unit, and p the pressure. The
system is closed by the following algebraic equation:

p = (𝛾 − 1)
(
𝜌E − 1

2
𝜌u2

)
, (2)

where 𝛾 = 1.4 is the heat capacity ratio. We introduce two other quantities which will be useful in the

following: the total enthalpy H = E + p
𝜌

and the speed of sound c =
√

(𝛾 − 1)
(

H − 1
2
u2
)

. We can

rewrite the system (1) in the vectorial form:

𝜕tU + 𝜕xF(U) = 0, (3)

where

U =

[
𝜌
𝜌u
𝜌E

]
=

[w1
w2
w3

]
, F(U) =

⎡⎢⎢⎢⎣
𝜌u

𝜌u2 + p
u(𝜌E + p)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

w2

w2
2

w1
+ (𝛾 − 1)

(
w3 − 1

2

w2
2

w1

)
𝛾

w2w3

w1
− (𝛾−1)

2

w3
2

w2
1

⎤⎥⎥⎥⎥⎥⎦
.

One can also write (1) in the nonconservative form:

𝜕tU + A(U)𝜕xU = 0, (4)

where the Jacobian matrix A writes:

A(U) = 𝜕F
𝜕U

=

⎡⎢⎢⎢⎢⎣
0 1 0

𝛾−3
2

u2 (3 − 𝛾)u 𝛾 − 1

𝛾−2
2

u3 − c2u
𝛾−1

3−2𝛾
2

u2 + c2

𝛾−1
𝛾u

⎤⎥⎥⎥⎥⎦
,

its eigenvalues are 𝜆1 = u− c, 𝜆2 = u, and 𝜆3 = u+ c and its eigenvectors are:

r1 =
⎡⎢⎢⎢⎣

1

u − c
H − uc

⎤⎥⎥⎥⎦ , r2 =
⎡⎢⎢⎢⎣

1

u
u2

2

⎤⎥⎥⎥⎦ , r3 =
⎡⎢⎢⎢⎣

1

u + c
H + uc

⎤⎥⎥⎥⎦ .
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Therefore A is R-diagonalizable and the system (1) is strictly hyperbolic. At last, (3) will be
supplemented with a given initial data U(x, t = 0) = U0(x), ∀ x∈R.

1.2 The sensitivity system

Considering only smooth solutions of (1), one can apply the continuous sensitivity equation (CSE)
[2, 5, 6] method which consists in differentiating (1) with respect to the parameter of interest a. One
can then formally exchange the derivatives in time and space with the ones with respect to a (see [7]
for the theoretical aspects) and obtain the following sensitivity system:⎧⎪⎨⎪⎩

𝜕t𝜌a + 𝜕x(𝜌u)a = 0,

𝜕t(𝜌u)a + 𝜕x(𝜌au2 + 2𝜌uua + pa) = 0,

𝜕t(𝜌E)a + 𝜕x(ua(𝜌E + p) + u((𝜌E)a + pa)) = 0,

(5)

which can be written in vectorial form as

𝜕tUa + 𝜕xFa(U,Ua) = 0, (6)

where we used the following notation:

Ua = 𝜕aU =
⎡⎢⎢⎢⎣

𝜌a

(𝜌u)a
(𝜌E)a

⎤⎥⎥⎥⎦ , Fa(U,Ua) = 𝜕aF(U) =
⎡⎢⎢⎢⎣

(𝜌u)a
𝜌au2 + 2𝜌uua + pa

ua(𝜌E + p) + u((𝜌E)a + pa)

⎤⎥⎥⎥⎦ .
Note that differentiating (2) one has:

pa = (𝛾 − 1)
(
(𝜌E)a −

1
2
𝜌au2 − 𝜌auua

)
which acts as a closure relation for (5). The initial data for the sensitivity is Ua(x, t = 0) = 𝜕aU0(x).

1.3 The global system

In order to write the global system, that is, the state and sensitivity system, in a more compact way, we
introduce the following vectors:

V =
[

U
Ua

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

w6

⎤⎥⎥⎥⎥⎥⎥⎦
,

G(V) =

[
F(U)

Fa(U,Ua)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w2

w2
2

w1
+ (𝛾 − 1)

(
w3 − 1

2

w2
2

w1

)
𝛾

w2w3

w1
− (𝛾−1)

2

w3
2

w2
1

)

w5

𝛾−3
2

w2
2w4

w2
1

− (𝛾 − 3)w2w5

w1
+ (𝛾 − 1)w6

𝛾
w3w5

w1
− 𝛾

w2w3w4

w2
1

− 3
2
(𝛾 − 1)w2

2w5

w1
+ (𝛾 − 1)w3

2w4

w3
1

+ 𝛾
w2w6

w1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Therefore, the complete system writes:{
𝜕tV + 𝜕xG(V) = 0,

V(x, 0) = V0(x),
(7)

with V0(x) = (U0(x), 𝜕aU0(x))t. The Jacobian matrix of the complete system has the following form:

𝜕G(V)
𝜕V

= M(V) =
[

A 0
B A

]
,

where A is the Jacobian matrix of the state system and B writes:

B =
⎡⎢⎢⎢⎣

0 0 0

(𝛾 − 3)uua (3 − 𝛾)ua 0

(⋆) (•) 𝛾ua

⎤⎥⎥⎥⎦ , (8)

with

(⋆) = − c2

𝛾 − 1
pa
p

u + 3
2
(𝛾 − 2)u2ua +

c2

𝛾 − 1
u𝜌a
𝜌

− c2

𝛾 − 1
ua + 𝛾

u3𝜌a
𝜌

,

and

(•) = 𝛾

2
u2𝜌a −

c2

𝛾 − 1
𝜌a +

6 − 5𝛾
2

u2𝜌a
𝜌

+ (3 − 2𝛾)uua + 3(𝛾 − 1)u𝜌a
𝜌2

+ c2

𝛾 − 1
pa
p
.

The matrix M has three repeated eigenvalues, which are the eigenvalues of the matrix A. More
precisely, one can prove the following result.

Proposition 1 The global system (7) is weakly hyperbolic.

Proof. A system of the form (7) is weakly hyperbolic if its Jacobian matrix has real
eigenvalues and it is not R-diagonalizable. We want to investigate whether or not the
matrix M is R-diagonalizable. A matrix is diagonalizable if and only if its minimal poly-
nomial splits in distinct roots. Since the characteristic polynomial of the matrix M is the
following:

pM(x) = (x − 𝜆1)2(x − 𝜆2)2(x − 𝜆3)2, (9)

the minimal polynomial, in order to have distinct roots, can be at most of degree 3.
Therefore, if M is diagonalizable, it must be:

(M − 𝜆1I6)(M − 𝜆2I6)(M − 𝜆3I6) = 0. (10)

Let us write (10) by blocks:[
A − 𝜆1I3 0

B A − 𝜆1I3

][
A − 𝜆2I3 0

B A − 𝜆2I3

][
A − 𝜆3I3 0

B A − 𝜆3I3

]
= 0. (11)

Developing the left-hand side products one obtains the following matrix:[
(A − 𝜆1I3)(A − 𝜆2I3)(A − 𝜆3I3) 0

(■) (A − 𝜆1I3)(A − 𝜆2I3)(A − 𝜆3I3)

]
, (12)

where

(■) = B(A − 𝜆2I3)(A − 𝜆3I3) + (A − 𝜆1I3)B(A − 𝜆3I3) + (A − 𝜆1I3)(A − 𝜆2I3)B.
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The top-left and bottom-right coefficients are equal to the characteristic polynomial of A
evaluated in A, thus they are zero. Therefore, the matrix M is diagonalizable if and only
if (■) = 0. Let us compute the coefficient (1, 1) of (■):

(■)(1,1) = 0 + [c − u, 1, 0]
⎡⎢⎢⎢⎣

0

(3 − 𝛾)u2ua − (𝛾−3)2

2
u2ua

⋄

⎤⎥⎥⎥⎦
+ [c − u, 1, 0]

⎡⎢⎢⎢⎣
(𝛾 − 3)uua

(𝛾 − 2)(3 − 𝛾)u2ua + (𝛾 − 1)(⋆)
Δ

⎤⎥⎥⎥⎦
= −3

2
(𝛾 − 1)u2ua + (𝛾 − 3)cuua − c2upa

p
+ c2u𝜌a

𝜌
− c2ua + 𝛾(𝛾 − 1)u3 𝜌a

𝜌
,

where there is no need to specify ⋄ and Δ. There is no reason why the quantity should
be always be zero. Therefore, the matrix is not diagonalizable and the complete system
is not hyperbolic in general. However, as the eigenvalues are real, the system is weakly
hyperbolic. ▪

2 SOURCE TERM

The sensitivity system (5) was derived assuming that the state solution U is regular. However, this is not
generally true for hyperbolic systems such as the one considered [7]: if the state is discontinuous, the
sensitivity exhibits Dirac delta functions. As said earlier, different choices are possible: some authors
have tried to adapt their numerical schemes in order to deal with the Dirac functions [12–14], some oth-
ers added a correction term to the sensitivity equations [10, 11]. We decide to adopt the second strategy,
as done in [9], that leads to an accurate sensitivity almost everywhere in the domain, except for the dis-
continuity points. The correction term that we add to the sensitivity equations has the following form:

S =
Ns∑

k=1

𝛿k𝝆k, (13)

where Ns is the number of discontinuities, which can be either shocks or contact discontinuities,
𝛿k = 𝛿(x− xk,s[t]) is the Dirac delta function with xk,s(t) position of the kth shock and 𝝆k is the ampli-
tude of the kth correction. To compute the amplitude 𝝆k(t), we start by integrating the sensitivity
equations with the source term on a control volume which contains a single discontinuity travelling
at speed 𝜎k. As the control volume goes to zero, one has:

𝝆k = (U−
a,k − U+

a,k)𝜎k + Fa(U+
k ,U+

a,k) − Fa(U−
k ,U−

a,k), (14)

where U+
k,a (respectively U−

k,a) is the value of the sensitivity to the right (respectively left) of the kth
discontinuity. Then, one writes the Rankine–Hugoniot relations associated with (3)

−𝜎k(U+
k − U−

k ) + F(U+
k ) − F(U−

k ) = 0,

where U+
k (respectively U−

k ) is the value of the state to the right (respectively left) of the kth
discontinuity. If we differentiate these conditions with respect to a, we obtain:

(U−
k,a − U+

k,a)𝜎k + (U−
k − U+

k )𝜎k,a + 𝜎k(𝜕xU+−k𝜕xU−
k )𝜕axk,s(t)

= Fa(U−
k ,U−

a,k) − Fa(U+
k ,U+

a,k) +
(
𝜕F(U+

k )
𝜕U

𝜕xU+
k −

𝜕F(U−
k )

𝜕U
𝜕xU−

k

)
𝜕axk,s(t), (15)
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FIGURE 1 Spatial discretization

where 𝜎k,a := 𝜕a𝜎k. Replacing (15) into (14), one obtains the following definition of 𝝆k, which does
not depend on the sensitivity itself:

𝝆k = (U+ − U−)𝜎k,a + 𝜎k(𝜕xU+ − 𝜕xU−)𝜕axk,s(t) −
(
𝜕F(U+)
𝜕U

𝜕xU+ − 𝜕F(U−)
𝜕U

𝜕xU−
)
𝜕axk,s(t). (16)

The terms depending on 𝜕axk,s(t) are very difficult to estimate. However, one can remark that all these
terms contain 𝜕xU±

k : therefore, in the following sections, when we design first order finite volume
schemes for the sensitivity we will consider the simpler expression

𝝆k(t) = 𝜎k,a(U+
k − U−

k ), (17)

since the solution, in a first order finite volume framework, is piecewise constant on the cells and
therefore 𝜕xU±

k = 0. Replacing (17) into (13) gives the following definition of the source term (valid
only for piecewise constant functions):

S =
Ns∑

k=1

𝜎k,a(U+
k − U−

k )𝛿k. (18)

A special treatment, which will be detailed later, is necessary for a second or higher order
discretization, where the discrete solution is not constant within each cell and therefore 𝜕xU±

k ≠ 0.
The new system thus writes: {

𝜕tU + 𝜕xF(U) = 0

𝜕tUa + 𝜕xFa(U,Ua) = S.
(19)

In the next section, we design a numerical scheme to approximate the solution of (19). The analytical
solution for a given initial data of Riemann type is detailed in Appendix A.

3 NUMERICAL METHODS

In this section we consider the numerical approximation of (19). We derive first- and second-order
Roe-type numerical schemes and we pay particular attention to the numerical diffusion effects induced
by these approaches. Indeed and as we will see it may prevent the numerical solution from converging
to the correct solution. We consider a uniform grid in space with a constant step Δx, xj is the center
of the jth cell Cj, whose extrema are xj−1/2 and xj+1/2 (cf. Figure 1). We use an adaptive time step Δtn,
chosen according to a CFL condition, and the intermediate times are tn+1 = tn +Δ tn. We indicate with
Vn

j = (Un
j ,Un

a,j)t the average value of the state and the sensitivity in the cell Cj at time tn.
We use Godunov-type schemes, which consist of two main steps: first, one solves the Rie-

mann problem at each interface xj−1/2 at time tn, obtaining in this way a solution at time tn+1,
v(x, tn+ 1) = (u(x, tn+ 1), ua(x, tn+ 1))t; the second step is to project v(x, tn+ 1) in order to obtain a piece-
wise constant solution on the mesh. How to compute v(x, t) is the topic of the next subsections: first we
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FIGURE 2 Structure of the Roe solver for the state [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Structure of the HLL-type solver for the sensitivity [Color figure can be viewed at wileyonlinelibrary.com]

describe an approximate solver for the state and then two for the sensitivity. Different choices for the
solution of the Riemann problem lead to different numerical schemes. Then, we explain two different
projection techniques: the classical one and an anti-diffusive one. Finally, we explain how to extend
the schemes to higher order in space, focusing in particular on the second order.

3.1 Riemann solver for the state

First, we consider the state system, for which the classical numerical schemes can be used: in this
work we used the approximate Riemann solver of Roe, because it has the property of being exact for
an isolated shock and we want to be as precise as possible in the shocks. In addition, we remark that
it would not be possible to use a solver with only one intermediate star state, such as HLL (Harten,
Lax, and van Leer [17]), because of the definition of the source term (17): two intermediate states
are necessary in order to be able to compute the correction term across the contact discontinuity (cf.
Figures 2 and 3 for the structure of different solvers).

The main idea of the Roe scheme is to replace the Jacobian matrix A(U) in (4) with a constant
matrix A(UL, UR), obtaining in this way a linearized system, whose solution to the Riemann problem
can be computed exactly. For the Euler system, a proper linearization is provided by Roe in the original
paper [18]. Furthermore, there is no need to assemble the matrix, it is sufficient to know its eigenvalues
and eigenvectors, which are the following:

𝜆ROE
1 = ũ − c̃, 𝜆ROE

2 = ũ, 𝜆ROE
3 = ũ + c̃,

r̃1 =
⎛⎜⎜⎜⎝

1

ũ − c̃
H̃ − ũc̃

⎞⎟⎟⎟⎠ , r̃2 =
⎛⎜⎜⎜⎝

1

ũ
ũ2

2

⎞⎟⎟⎟⎠ , r̃3 =
⎛⎜⎜⎜⎝

1

ũ + c̃
H̃ + ũc̃

⎞⎟⎟⎟⎠ .

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The quantities denoted with a tilde are Roe averaged quantities defined as follows:

ũ =
√
𝜌LuL +

√
𝜌RuR√

𝜌L +
√
𝜌R

, H̃ =
√
𝜌LHL +

√
𝜌RHR√

𝜌L +
√
𝜌R

, c̃ =
√

(𝛾 − 1)
(

H̃ − 1
2

ũ2
)
.

Therefore, the Roe solver consists of four constant states (UL, U∗
L, U∗

R, and UR, cf. Figure 2) connected
by three discontinuities travelling at speeds 𝜆ROE

i . To compute the star states U∗
L and U∗

R, first we
decompose the jump UR −UL along the eigenvectors of the Jacobian matrix A:

ΔU = UR − UL =
3∑

i=1

𝛼ir̃i. (20)

The relation (20) is used to compute the coefficients 𝛼i, then one has:

U∗
L = UL + 𝛼1r̃1 = UR − 𝛼2r̃2 − 𝛼3r̃3, U∗

R = UR − 𝛼3r̃3 = UL + 𝛼1r̃1 + 𝛼2r̃2. (21)

Once all the quantities U∗
L, U∗

R, and 𝜆ROE
𝓁 are known at each interface xj−1/2, u(x, tn+ 1) can be built by

juxtaposition of the solutions of each Riemann problem.
It is well known that, in case of transonic rarefaction, the Roe solver provides a nonentropic

solution. To overcome this problem, we implemented the entropic fix proposed in [19].

3.2 Riemann solvers for the sensitivity

For the sensitivity we propose two different strategies. Indeed and as explained in the previous section,
for the state it is necessary to use a Riemann solver with two different star states, in order to be able
to compute the source term across the contact discontinuity. However, for the sensitivity an HLL-type
approach can be used, which gives a first strategy. Another possible strategy is to keep for the sensitivity
the same structure as for the state, and therefore to have an HLLC-type scheme (Harten, Lax, and van
Leer contact [20]). A third possibility which we will not analyze here, explored in detail in [15], is to
rewrite the sensitivity flux in such a way that the same Roe Riemann solver used for the state can be
applied for the sensitivity. Let us now describe the two possibilities considered in detail.

3.2.1 HLL-type scheme
The first Riemann solver proposed for the sensitivity has a simpler structure than the state solver: we
neglect the contact discontinuity, therefore the solver consists only of three constant states (Ua,L, U∗

a,
and Ua, R) connected by two discontinuities travelling at speeds 𝜆ROE

1 and 𝜆ROE
3 (cf. Figure 3). The star

value of the sensitivity U∗
a at the interface j− 1/2 can be computed directly from the Harten, Lax, and

van Leer conditions [17] applied to system of conservation laws with source terms. We get:

U∗
a,j−1∕2 = 1

𝜆ROE
3 − 𝜆ROE

1

(𝜆ROE
3 Un

a,j − 𝜆ROE
1 Un

a,j−1

−Fa(Uj,Ua,j) + Fa(Uj−1,Ua,j−1) + Sj−1∕2), (22)

where the source term is discretized as follows:

Sj−1∕2 = 𝜕a𝜆
ROE
1,j−1∕2(U∗

L,j−1∕2 − Uj−1)𝑑1,j−1∕2 + 𝜕a𝜆
ROE
2,j−1∕2(U∗

R,j−1∕2 − U∗
L,j−1∕2)

+𝜕a𝜆
ROE
3,j−1∕2(Uj − U∗

R,j−1∕2)𝑑3,j−1∕2,

where d𝓁,j−1/2 are shock detectors, d𝓁,j−1/2 = 1 if there is an 𝓁-shock at the interface j− 1/2, it is zero
otherwise. They are based on the fact that the velocity u is always decreasing across a shock, whilst
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the density 𝜌 is increasing across a 1-shock and it is decreasing across a 3-shock:

𝑑1,j−1∕2 =

{
1 if 𝜌j > 𝜌j−1 and uj < uj−1,

0 otherwise,
𝑑3,j−1∕2 =

{
1 if 𝜌j < 𝜌j−1 and uj < uj−1,

0 otherwise.

Furthermore, we remark that there is no need for a contact detector because it is known that the middle
wave is always a contact discontinuity.

Such a discretization of the source term comes directly from (18), if one considers the fact that a
Riemann problem can have at most three discontinuities.

3.2.2 HLLC-type scheme
Another possible approach for the sensitivity is to keep the same structure as for the state (cf. Figure 2),
with the same speeds of propagation for the three discontinuities. We need to compute the two inter-
mediate constant states U∗

a,L and U∗
a,R. Again, a possible strategy to compute U∗

a,L and U∗
a,R is to follow

the Harten, Lax, and van Leer formalism with source term and to impose the following linear system,
made of Rankine–Hugoniot jump relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜆1(𝜌∗a,L − 𝜌a,L) + (𝜌u)∗a,L − (𝜌u)a,L = 𝜕a𝜆1(𝜌∗L − 𝜌L),

−𝜆2(𝜌∗a,R − 𝜌∗a,L) + (𝜌u)∗a,R − (𝜌u)∗a,L = 𝜕a𝜆2(𝜌∗R − 𝜌∗L),

−𝜆3(𝜌a,R − 𝜌∗a,R) + (𝜌u)a,R − (𝜌u)∗a,R = 𝜕a𝜆3(𝜌R − 𝜌∗R),
(𝛾−3)

2
ũ2(𝜌∗a,R − 𝜌∗a,L) + (2 − 𝛾)ũ((𝜌u)∗a,R − (𝜌u)∗a,L)

+(𝛾 − 1)((𝜌E)∗a,R − (𝜌E)∗a,L) = 𝜕a𝜆2((𝜌u)∗R − (𝜌u)∗L),

(𝜆2 − 𝜆1)(𝜌u)∗a,L + (𝜆3 − 𝜆2)(𝜌u)∗a,R + 𝜆1(𝜌u)a,L − 𝜆3(𝜌u)a,R

+Fa,R|2 − Fa,L|2 = ΔxS|2,
(𝜆2 − 𝜆1)(𝜌E)∗a,L + (𝜆3 − 𝜆2)(𝜌E)∗a,R + 𝜆1(𝜌E)a,L − 𝜆3(𝜌E)a,R

+Fa,R|3 − Fa,L|3 = ΔxS|3,

(23)

where 𝜆1 = ũ− c̃, 𝜆2 = ũ, and 𝜆3 = ũ+ c̃. The first three equations are the Rankine–Hugoniot condition
on 𝜌 across the three waves, differentiated with respect to a. Note that summing up these equations
gives the integral condition of the Harten, Lax, and van Leer formalism of the density variable. The
fourth equation is the Rankine–Hugoniot condition on 𝜌u for the linearized system differentiated with
respect to a; the last two equations are the integral conditions on the sensitivities (𝜌u)a and (𝜌E)a. If
we define the following vectors

x = (𝜌∗a,L, 𝜌∗a,R, (𝜌u)∗a,L, (𝜌u)∗a,R, (𝜌E)∗a,L, (𝜌E)∗a,R)t

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

b4

b5

b6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕a𝜆1(𝜌∗L − 𝜌L) + (𝜌u)a,L − 𝜆1𝜌a,L

𝜕a𝜆2(𝜌∗R − 𝜌∗L)
𝜕a𝜆3(𝜌R − 𝜌∗R) − (𝜌u)a,R + 𝜆3𝜌a,R

𝜕a𝜆2((𝜌u)∗R − (𝜌u)∗L)
ΔxS|2 − 𝜆1(𝜌u)a,L + 𝜆3(𝜌u)a,R − Fa,R|2 + Fa,L|2
ΔxS|3 − 𝜆1(𝜌E)a,L + 𝜆3(𝜌E)a,R − Fa,R|3 + Fa,L|3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
the system can be rewritten as:

x = b,
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where  is the following matrix:

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜆1 0 1 0 0 0

𝜆2 −𝜆2 −1 1 0 0

0 𝜆3 0 −1 0 0

−(𝛾−3)
2

ũ2 (𝛾−3)
2

ũ2 −(2 − 𝛾)ũ (2 − 𝛾)ũ −(𝛾 − 1) (𝛾 − 1)
0 0 c̃ c̃ 0 0

0 0 0 0 c̃ c̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and we have det() = 4c̃4(𝛾 − 1) ≠ 0. The solution of the system has the following form:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2c̃+ũ)b1+(̃c+ũ)b2+ũb3−b5

2c̃2

−ũb1+(̃c−ũ)b2+(2c̃−ũ)b3+b5

2c̃2

(ũ2+c̃ũ)b1+(ũ2−c̃2)b2+(ũ2−c̃)ũb3+(̃c−ũ)b5

2c̃2

−(ũ2+c̃ũ)b1+(̃c2−ũ2)b2+(̃cũ−ũ2)b3+(̃c+ũ)b5

2c̃2

(𝛾−1)(ũ3+c̃ũ2)b1+((𝛾−1)ũ3+2(2−𝛾 )̃c2ũ)b2+(𝛾−1)(ũ3−c̃ũ2)b3−2c̃2b4−(𝛾−1)ũ2b5+2(𝛾−1)̃cb6

4(𝛾−1)̃c2

−(𝛾−1)(ũ3+c̃ũ2)b1−((𝛾−1)ũ3+2(2−𝛾 )̃c2ũ)b2+(𝛾−1)(̃cũ2−ũ3)b3+2c̃2b4+(𝛾−1)ũ2b5+2(𝛾−1)̃cb6

4(𝛾−1)̃c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

An alternative strategy to compute U∗
a,L and U∗

a,R is to differentiate with respect to a the following
relations:

U∗
L = UL + 𝛼1r1, U∗

R = UR − 𝛼3r3, (24)

obtaining
U∗

a,L = Ua,L + 𝛼a,1r1 + 𝛼1ra,1, U∗
a,R = Ua,R − 𝛼a,3r3 − 𝛼3ra,3, (25)

with

r1 =
⎛⎜⎜⎜⎝

1

ũ − c̃
H̃ − ũc̃

⎞⎟⎟⎟⎠ , ra,1 =
⎛⎜⎜⎜⎝

0

ũa − c̃a

H̃a − ũac̃ − ũc̃a

⎞⎟⎟⎟⎠ ,

r2 =
⎛⎜⎜⎜⎝

1

ũ
ũ2

2

⎞⎟⎟⎟⎠ , ra,2 =
⎛⎜⎜⎜⎝

0

ũa

ũũa

⎞⎟⎟⎟⎠ ,

r3 =
⎛⎜⎜⎜⎝

1

ũ + c̃
H̃ + ũc̃

⎞⎟⎟⎟⎠ , ra,3 =
⎛⎜⎜⎜⎝

0

ũa + c̃a

H̃a + ũac̃ + ũc̃a

⎞⎟⎟⎟⎠ ,
⎧⎪⎪⎨⎪⎪⎩
𝛼2 = 𝛾−1

c̃2
[(𝜌R − 𝜌L)(H̃ − ũ2) + ũ((𝜌u)R − (𝜌u)L) − ((𝜌E)R − (𝜌E)L)],

𝛼1 = 1
c̃
[(𝜌R − 𝜌L)(ũ + c̃) − ((𝜌u)R − (𝜌u)L) − c̃𝛼2],

𝛼3 = (𝜌R − 𝜌L) − (𝛼1 + 𝛼2),
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛼a,2 = − 2c̃a(𝛾−1)
c̃3

[(𝜌R − 𝜌L)(H̃ − ũ2) + ũ((𝜌u)R − (𝜌u)L) − ((𝜌E)R − (𝜌E)L)]

+ 𝛾−1
c̃2

[(𝜌a,R − 𝜌a,L)(H̃ − ũ2) + (𝜌R − 𝜌L)(H̃a − 2ũũa)

+ũa((𝜌u)R − (𝜌u)L) − ((𝜌E)R − (𝜌E)L) + ũ((𝜌u)a,R − (𝜌u)a,L) − ((𝜌E)a,R − (𝜌E)a,L)],

𝛼a,1 = − c̃a
c̃2
[(𝜌R − 𝜌L)(ũ + c̃) − ((𝜌u)R − (𝜌u)L) − c̃𝛼2]

+ 1
2c̃
[(𝜌a,R − 𝜌a,L)(ũ + c̃) + (𝜌R − 𝜌L)(ũa + c̃a) − ((𝜌u)a,R − (𝜌u)a,L) − c̃a𝛼2 − c̃𝛼a,2],

𝛼a,3 = (𝜌a,R − 𝜌a,L) − (𝛼a,1 + 𝛼a,2).

The next proposition states that the two strategies to define U∗
a,L and U∗

a,R are equivalent.

Proposition 2 The star sensitivities (25) solve the system (23).

Proof. We will prove that the star sensitivities defined in (25) satisfy the system (23).

1 First equation. Writing the first coefficient of (24) one easily finds 𝜌∗L − 𝜌L = 𝛼1, and writing
the first two coefficient of (25) one finds

𝜌∗a,L − 𝜌a,L = 𝛼a,1, (𝜌u)∗a,L − (𝜌u)a,L = 𝛼a,1(ũ − c̃) + 𝛼1(ũa − c̃a).

We now replace these three expressions in the first equation of (23) and we obtain:

−𝜆1𝛼a,1 + 𝛼a,1(ũ − c̃) + 𝛼1(ũa − c̃a) = 𝜕a𝜆1𝛼1,

which is always verified, since 𝜆1 = ũ− c̃.

2 Second equation. We recall that

UR − UL =
3∑

i=1

𝛼iri, Ua,R − Ua,L =
3∑

i=1

𝛼a,iri + 𝛼ira,i.

Therefore, one has:

U∗
R − U∗

L = 𝛼2r2, U∗
a,R − U∗

a,L = 𝛼a,2r2 + 𝛼2ra,2,

which gives us the following relations:

𝜌∗R − 𝜌∗L = 𝛼2, 𝜌∗a,R − 𝜌∗a,L = 𝛼a,2, (𝜌u)∗a,R − (𝜌u)∗a,L = 𝛼a,2ũ + 𝛼2ũa.

We now replace them in the second equation of (23) and we obtain:

−𝜆2𝛼a,2 + 𝛼a,2ũ + 𝛼2ũa = 𝜕a𝜆2𝛼2,

which is always verified, since 𝜆2 = ũ.

3 Third equation. As we did for the first two equations, one can find the three following
expressions

𝜌R − 𝜌∗R = 𝛼3, 𝜌a,R − 𝜌∗a,R = 𝛼a,3, (𝜌u)a,R − (𝜌u)∗a,R = 𝛼a,3(ũ + c̃) + 𝛼2(ũa + c̃a).

By replacing them in the third equation of (23) one can easily check that the equation
is always verified, since 𝜆3 = ũ+ c̃.
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4 Fourth equation. As we did for the previous equations, one can find the three following
expressions

(𝜌u)∗R − (𝜌u)∗L = 𝛼2ũ, 𝜌∗a,R − 𝜌∗a,L = 𝛼a,2, (𝜌u)∗a,R − (𝜌u)∗a,L = 𝛼a,2ũ + 𝛼2ũa,

(𝜌E)∗a,R − (𝜌E)∗a,L = 𝛼a,2
ũ2

2
+ 𝛼2ũũa.

By replacing them in the fourth equation of (23) one can easily check that the equation
is always verified, since 𝜆2 = ũ.

5 Fifth and sixth equations. The last two equations are the last two components of the following
vectorial equation

(𝜆2 − 𝜆1)U∗
a,L + (𝜆3 − 𝜆2)U∗

a,R + 𝜆1Ua,L − 𝜆3Ua,R + Fa,R − Fa,L = ΔxS,

which can be rewritten as:

𝜆1(Ua,L − U∗
a,L) + 𝜆2(U∗

a,L − U∗
a,R) + 𝜆3(U∗

a,R − Ua,R) + Fa,R − Fa,L = ΔxS.

Replacing the definitions (25) one finds:

−𝜆1(𝛼a,1r1 + 𝛼1ra,1) − 𝜆2(𝛼a,2r2 + 𝛼2ra,2) − 𝜆3(𝛼a,3r3 + 𝛼3ra,3) + Fa,R − Fa,L = ΔxS.

We recall that by definition of Roe fluxes, one has:

FR − FL =
3∑

i=1

𝛼i𝜆iri ⇒ Fa,R − Fa,L =
3∑

i=1

𝛼a,i𝜆iri + 𝛼i𝜆a,iri + 𝛼i𝜆ira,i.

Therefore, we obtain:

ΔxS =
3∑

i=1

𝛼i𝜆a,iri = 𝜆a,1(U∗
L − UL) + 𝜆a,2(U∗

R − U∗
L) + 𝜆a,3(UR − U∗

R),

which is consistent with our discretization of the source term. ▪

Finally, one can obtain ua(x, tn+ 1) by juxtaposition, as we did for the state.

3.3 Projection step

The projection step is usually performed by averaging on the cell the solution v(x, tn+ 1), whose
components u(x, tn+ 1) and ua(x, tn+ 1) can be computed as described in the previous sections.

Vn+1
j = 1

Δx ∫
xj+1∕2

xj−1∕2

v(x, tn+1)dx. (26)

We remark that the integral (26) is easy to compute, v being piecewise constant. However, this projec-
tion method introduces numerical diffusion. As shown in [9], numerical diffusion plays a fundamental
role in the discretization of the sensitivity, especially across shocks. For this reason, we propose another
projection method, introduced in [21] and inspired by Glimm’s method [22, 23]. First, we define a
staggered mesh, whose cells will be denoted Cn

j , as follows:

Cn
j = (xn

j−1∕2, xn
j+1∕2), xn

j−1∕2 = xj−1∕2 + 𝜎n
j−1∕2Δtn,

where 𝜎n
j−1∕2 is a proper speed, defined in order to avoid averaging across a shock. Numerical results

show that there is no need to move the mesh for the contact discontinuity (cf. Section 4). The definition
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of 𝜎n
j−1∕2 is the following:

𝜎n
j−1∕2 =

⎧⎪⎪⎨⎪⎪⎩
𝜆ROE

1,j−1∕2 if 𝑑1,j−1∕2 = 1,

𝜆ROE
3,j−1∕2 if 𝑑3,j−1∕2 = 1,

0 otherwise,

where d𝓁,j−1/2 are the shock detectors defined earlier.
The second step is to perform the average on the staggered mesh, obtaining in this way an

intermediate solution Vn+1
j :

Vn+1
j = 1

Δxn
j ∫

xj+1∕2

xj−1∕2

v(x, tn+1)dx, (27)

where Δxn
j = xj+1∕2 − xj−1∕2. Finally, the last step is a sampling step, in order to go back to the initial

uniform grid. Let (𝛽n) be a random sequence varying in (0, 1), for instance 𝛽n ∼  ([0, 1]); then:

Vn+1
j =

⎧⎪⎪⎨⎪⎪⎩

Vn+1
j−1 if 𝛽n+1 ∈

(
0, Δt

Δx
max(𝜎n

j−1∕2, 0)
)
,

Vn+1
j if 𝛽n+1 ∈

[
Δt
Δx

max(𝜎n
j−1∕2, 0), 1 + Δt

Δx
min(𝜎n

j+1∕2, 0)
)
,

Vn+1
j+1 if 𝛽n+1 ∈

[
1 + Δt

Δx
min(𝜎n

j+1∕2, 0), 1
)
.

(28)

We remark that one 𝛽n is drawn at each time step and it is the same for all the cells. The method is
proven to be convergent even if a low discrepancy deterministic sequence is used. In this work, we use
the van der Corput sequence (cf. [21]):

𝛽n =
m∑

k=0

ik2−(k+1), n =
m∑

k=0

ik2k,

where ik = 0, 1 is the binary expansion of the integers.

3.4 Second-order extension

In this section, we extend to the second order the schemes presented above. In time, we use a standard
two steps Runge–Kutta method, whilst in space we use a MUSCL-type (monotonic upstream-centered
scheme for conservation laws, [24]) approach, inspired from [9]. In a few words (we refer to [9] for more
details) the main idea of a MUSCL-type scheme is to consider in replacement of a constant value Vn

j in
each cell, a higher order polynomial Vn

j (x), x ∈ [xj−1/2, xj+1/2]. The edge values Vn
j (xj+1∕2), Vn

j+1(xx+1∕2)
are used as left and right values for the Riemann problem at the interface j + 1/2; the Riemann problem
is then solved as explained in the previous section. However, the definition of the source term (13)–(17)
is valid only if the state is piecewise constant (cf. [9]). Therefore, we suggest to consider a piecewise
constant state on half of each cell: these two constant values will be denoted Vn

j±1∕4 and correspond to
the edge values Vn

j (xj±1∕2) (see Figure 4). In this work, we compute the edge values with a standard
approach:

Vn
j±1∕4 = Vn

j ±ΔVn
j ,

and usual choice for ΔVn
j is to use a slope-limiter procedure, for instance:

ΔVn
j = 1

2
minmod (Vn

j+1 − Vn
j ,Vn

j − Vn
j−1),
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FIGURE 4 MUSCL discretization. Dashed red line: first-order discretization. Dotted blue line: classical second order
discretization. Solid black line: second-order discretization used in this work [Color figure can be viewed at
wileyonlinelibrary.com]

where

minmod (a, b) =

{
sgn (a)min(|a|, |b|) if ab > 0,

0 otherwise.

We remark that this approach leads to an additional Riemann problem in the middle of the cell: in
this way we are able to extend the scheme accuracy to second-order, while keeping piecewise constant
representations in the cells, which is necessary to make the terms containing 𝜕xU± vanishing in (15).

3.5 Summary

Here, we briefly sum up all the ingredients introduced in this section and we clarify how they can be
combined to obtain different numerical schemes:

• Order of the scheme. In this paper, we focused on first- and second-order schemes, but higher
order can be used bearing in mind that the state needs to be piecewise constant for the definition
of the source term to be valid.

• Riemann solver for the state. In this paper, we proposed the Roe Riemann solver for the state,
but the only constraint is to use a solver with two intermediate states U∗

L and U∗
R (for instance,

HLL could not be used for the state).
• Riemann solver for the sensitivity. We designed two different numerical schemes for the

sensitivity: an HLL and HLLC-type scheme.
• Type of projection. Either the classical projection or the anti-diffusive projection can be used.

Numerical results in the next section will show that, for this problem, diffusive scheme does not
converge to the analytical solution.

Finally, we remark that these four choices are independent of each other. In Table 1 we summarize
all the combinations used in this work, with the labels used in the next sections.

4 CONVERGENCE TESTS FOR THE NUMERICAL SCHEMES

We consider the Riemann problem described in Appendix A. The initial data for the state on the
physical variables is the following:

𝜌L = 1, uL = 0, pL = 1, 𝜌R = 0.125, uR = 0, pR = 0.1.

We consider as parameter of interest a = pL, therefore the initial data for the sensitivity is:

𝜌a,L = 𝜌a,R = ua,L = ua,R = pa,R = 0, pa,L = 1.
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TABLE 1 Numerical schemes summary

(a) State schemes

Diffusive Anti-diffusive

First order ROE I ROE I AD

Second order ROE II ROE II AD

(b) Sensitivity HLL schemes
Diffusive Anti-diffusive

First order HLL I HLL I AD

Second order HLL II HLL II AD

(c) Sensitivity HLLC schemes
Diffusive Anti-diffusive

First order HLLC I HLLC I AD

Second order HLLC II HLLC II AD

(a) (b) (c)

FIGURE 5 Convergence test for the state. The Roman numerals I and II stand for the order of the scheme. AD stands for
anti-diffusive. (a) ‖𝜌(x,T) − 𝜌ex(x,T)‖L1 . (b) ‖u(x,T) − uex(x,T)‖L1 . (c) ‖p(x, T) − pex(x,T)‖L1 [Color figure can be viewed at
wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 6 Convergence test for the sensitivity—HLL-type scheme. (a) ‖𝜌a(x,T) − 𝜌a,ex(x,T)‖L1 . (b)‖ua(x,T) − ua,ex(x,T)‖L1 . (c) ‖pa(x,T) − pa,ex(x,T)‖L1 [Color figure can be viewed at wileyonlinelibrary.com]

In Figures 5–7 we show the convergence of the different numerical schemes presented in Section 3.
Figure 5 shows the convergence for the state: the rate of convergence is the expected one; one can
remark that the anti-diffusive schemes are slightly less precise than the diffusive ones. In Figures 6
and 7 we plot the error for the sensitivity, first with the HLL-type scheme (Figure 6) and then with
the HLLC-type scheme (Figure 7): considering two different star regions for the sensitivity does not
seem to make much difference; however one can remark the same effect shown in [9] for a sim-
pler system: the diffusive schemes do not converge for the sensitivity, this is especially evident for

http://wileyonlinelibrary.com
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(a) (b) (c)

FIGURE 7 Convergence test for the sensitivity—HLLC-type scheme. (a) ‖𝜌a(x,T) − 𝜌a,ex(x,T)‖L1 . (b)‖ua(x,T) − ua,ex(x,T)‖L1 . (c) ‖pa(x,T) − pa,ex(x,T)‖L1 [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

FIGURE 8 First-order schemes, with and without numerical diffusion. HLL-type scheme for the sensitivity. (a) 𝜌(x, T). (b)
u(x, T). (c) p(x, T). (d) 𝜌a(x, T). (e) ua(x, T). (f) pa(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

the variable 𝜌a. In Figure 8 we plot the solution at the final time T = 0.1, obtained with a mesh
Δx = 10−3 with the first-order schemes, both diffusive and anti-diffusive (for the sensitivity, the
HLL-type scheme has been used): one can notice that the plateau in the right-star zone is not prop-
erly captured by the diffusive scheme. This does not change as one refines the mesh, nor with a
higher-order scheme, as one can see from Figure 9. In Figure 10 we compare the anti-diffusive schemes,
first- and second-order: for the state, the difference is noticeable mainly in the contact discontinu-
ity (therefore only for 𝜌), whilst for the sensitivity the difference is significant in the neighborhood
of the discontinuities before and after the rarefaction. Finally, in Figure 11 we compare the HLL
and the HLLC-type schemes for the sensitivity: as anticipated by the error plots, the two schemes
are almost equivalent in terms of results; the difference between the solutions provided by the two
second-order schemes in L∞-norm is 0.0096, 0.0139, and 0.0062, respectively for 𝜌a, ua, and pa

and this is why they are almost indistinguishable in Figure 11. For this reason, the use of HLL-type
scheme is preferable, being less expensive from a computational point of view and less complicated to
implement.

http://wileyonlinelibrary.com
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(a) (b) (c)

(d) (e) (f)

FIGURE 9 Second-order schemes, with and without numerical diffusion. HLL-type scheme for the sensitivity. (a) 𝜌(x, T).
(b) u(x, T). (c) p(x, T). (d) 𝜌a(x, T). (e) ua(x, T). (f) pa(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

FIGURE 10 First- and second-order schemes, without numerical diffusion. HLL-type scheme for the sensitivity. (a) 𝜌(x, T).
(b) u(x, T). (c) p(x, T). (d) 𝜌a(x, T). (e) ua(x, T). (f) pa(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

5 UNCERTAINTY QUANTIFICATION

5.1 Problem description

In this section, we show how the estimated sensitivities can be used for uncertainty propagation, that
is, estimate statistical moments of the solution accounting for some uncertain parameters [25–27].
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(a) (b) (c)

FIGURE 11 Second-order anti-diffusive schemes: HLL and HLLC comparison. (a) 𝜌a(x, T). (b) ua(x, T). (c) pa(x, T) [Color
figure can be viewed at wileyonlinelibrary.com]

We want to provide a demonstration of one of the many possible applications of the CSE method, in
order to underline the potentials of the proposed approach and its limitations, too. We also intend to
quantify the impact of removing the spikes from the sensitivity solution. Many techniques have been
developed during the last decades to propagate uncertainty through PDE models: these methods can
be either probabilistic or deterministic. The proposed method based on derivatives estimation falls into
the second category, while the most well-known of these techniques, the Monte Carlo method, is in the
first. Other techniques are for instance polynomial chaos [13, 28–30], or the random space partition
[31]. A very good review and comparison of many techniques with applications to fluid dynamics can
be found in [32]. A typical objective of uncertainty propagation is to determine a confidence interval
for the output of a model, in our case U, given the uncertainty on the input parameters. This estimation
is part of the broader domain of UQ, which also includes the identification of the most critical uncertain
parameters, their ranking, and the analysis of the variability of the output.

In this work, we compare the Monte Carlo approach and a sensitivity-based estimation. In the
following, X will stand for one of the variables, that is, X can either be 𝜌, u, or p, and Xa the corre-
sponding sensitivity. We use the notation 𝜇X to indicate the average of the variable X and 𝜎2

X for its
variance. Once these two quantities are known, one can build a confidence interval for the variable
X as:

CIX = [𝜇X − 𝜅𝜎X , 𝜇X + 𝜅𝜎X]. (29)

We remark that (29) is valid only for Gaussian data. The coefficient 𝜅 regulates the amplitude of the
interval and it is related to the probability for the variable X to actually fall in the interval. For instance,
the choice 𝜅 = 1.96 provides a 95% confidence interval, while 𝜅 = 2.58 a 99% one.

5.1.1 Monte Carlo method
Here we briefly introduce the Monte Carlo method, for more details see for instance [33]. The Monte
Carlo method is a probabilistic technique: to obtain an estimate of the average and of the standard devi-
ation one needs to perform multiple random simulations. Let a be the vector of uncertain parameters,
with a known distribution. Then, N random samples ai are drawn from this distribution, and for each
ai the corresponding solution Xi is computed. Then, the unbiased average and variance estimators are
used:

𝜇X = 1
N

N∑
i=1

Xi, 𝜎2
X = 1

N − 1

N∑
i=1

(𝜇X − Xi)2.

These estimates are good if N is sufficiently large: the slow convergence, and therefore the high
computational cost, is probably the main limitation of the Monte Carlo method.
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5.1.2 Sensitivity-based method
Once the sensitivities of the solution with respect to the input parameters are known, a deterministic
estimation of the average 𝜇X and of the variance 𝜎2

X of the output X can be easily obtained. Let 𝜇a be
the average of the uncertain vector a and 𝜎a the covariance matrix:

𝜇a =

[
𝜇a1

⋮
𝜇aM

]
, 𝜎a =

⎡⎢⎢⎢⎢⎣
𝜎2

a1
cov(a1, a2) … cov(a1, aM)

cov(a1, a2) 𝜎2
a2

… cov(a2, aM)
⋮ ⋱ ⋮

cov(a1, aM) … 𝜎2
aM

⎤⎥⎥⎥⎥⎦
,

where M is the number of uncertain parameters, 𝜇ai the average of the ith parameter, 𝜎2
ai its variance

and cov(⋅, ⋅) the covariance. Let us consider the first order Taylor expansion for the variable X with
respect to the vector of parameters a:

X(a) = X(𝜇a) +
M∑

i=1

(ai − 𝜇ai)Xai(𝜇a) + o(‖a‖2).

Then computing the average, since X(𝜇a) and Xai(𝜇a) are not random variables, at first order one gets:

𝜇X = E[X(a)] = X(𝜇a) +
M∑

i=1

Xai(𝜇a)E[ai − 𝜇ai] = X(𝜇a),

because E[(ai − 𝜇ai)] = 0. In the same way, one can compute the variance:

𝜎2
X = E[(X(a) − 𝜇X)2] = E

⎡⎢⎢⎣
( M∑

i=1

Xai(𝜇a)(ai − 𝜇ai)

)2⎤⎥⎥⎦
=

M∑
i=1

X2
ai(𝜇a)E[(ai − 𝜇ai)

2] +
M∑

i, j = 1
i ≠ j

Xai(𝜇a)Xaj(𝜇a)E[(ai − 𝜇ai)(aj − 𝜇aj)].

Therefore, we obtain the following first order estimates of the average and the variance of the
variable X:

𝜇X = X(𝜇a), 𝜎2
X =

M∑
i=1

X2
ai𝜎

2
ai +

M∑
i, j = 1
i ≠ j

Xai Xaj cov(ai, aj).

Higher-order estimates require higher order sensitivities [34].

5.2 Numerical results

We applied the uncertainty propagation techniques described in the previous subsection to the test
case described in Appendix A. The uncertain parameters are the left and right values of the physical
variables for the state, that is:

a = (𝜌L, 𝜌R, uL, uR, pL, pR)t,

and have a Gaussian distribution with the following average and covariance matrix:

𝜇a = (1, 0.125, 0, 0, 1, 0.1)t, 𝜎a = diag(0.001, 0.000125, 0.0001, 0.0001, 0.001, 0.0001).

This choice means that all the parameters are uncorrelated and we chose as their variance the 0.1% of
their average, except for the velocity, whose average is 0.
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(a) (b) (c)

FIGURE 12 Distribution of 𝜌(x, T; a) for three different values of x at final time T = 0.2. (a) In the rarefaction (x = 0.35). (b)
In the plateau (x = 0.6). (c) In the shock neighborhood (x = 0.85) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 13 Distribution of u(x, T; a) for three different values of x at final time T = 0.2. (a) In the rarefaction (x = 0.35). (b)
In the plateau (x = 0.6). (c) In the shock neighborhood (x = 0.85) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 14 Distribution of p(x, T; a) for three different values of x at final time T = 0.2. (a) In the rarefaction (x = 0.35). (b)
In the plateau (x = 0.6). (c) In the shock neighborhood (x = 0.85) [Color figure can be viewed at wileyonlinelibrary.com]

We remark the fact that the parameters follow a Gaussian distribution does not say anything about
the distribution of the output of the model. Therefore, before using the confidence interval (29), one
should check that the output is Gaussian, too. In Figures 12–14, three histograms are shown for each
physical variable: for x = 0.35 (i.e., in the middle of the rarefaction wave), for x = 0.6 (i.e., in the middle
plateau) and for x = 0.85 (i.e., close to the shock position). The histograms are obtained by computing
the analytical solution for 5,000 different values of the parameter vector a, which are sampled from
its distribution. The histograms are then normalized with respect to the probability density function,
using the MATLAB option “normalization,” “pdf.” As one can see, the output is Gaussian when far
from the shock; close to the shock, two distinct groups of points can be identified. The distribution
predicted with the SA is drawn in red: the prediction is wrong in the neighborhood of the shock,
as it fits perfectly in the plateau and it is slightly shifted for the rarefaction. This shift is due to the
prediction for the average, which is based entirely on the state and caused by the fact that it is only a
first order approximation. However, one can remark that the variance is correctly estimated using the

http://wileyonlinelibrary.com
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(a) (b) (c)

FIGURE 15 Monte Carlo approach. Average and the average plus and minus twice the standard deviation in red. Five
samples in black dashed lines. (a) 𝜌(x, T). (b) u(x, T). (c) p(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 16 SA approach without correction. Average and the average plus and minus twice the standard deviation in red.
Five samples in black dashed lines. (a) 𝜌(x, T). (b) u(x, T). (c) p(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 17 SA approach without correction. Average and the average plus and minus twice the standard deviation in red. Five
samples in black dashed lines—zoom. (a) 𝜌(x, T). (b) u(x, T). (c) p(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

sensitivities. In the following, we use the expression (29), expecting however a loss of precision in the
neighborhood of the shock.

In Figure 15 we show the results of the Monte Carlo approach: the average and the average plus
and minus twice the standard deviation (i.e., 𝜅 = 2) are plotted in red, five samples are plotted in black.
These results are obtained with N = 1,000 samples, on a mesh with Δx = 10−3 using a Roe first order
diffusive scheme. As one can see, the average process smudges the shock and the standard deviation
is bigger in that zone. In fact, this area of large variance around the shock location is related to the
delta Dirac function in sensitivity solution, but this peak is “smooth” due to the fact that Monte Carlo
approach accounts for flow nonlinearities and is not limited to the first-order estimate of the pertur-
bation. In Figures 16 and 17 we show the results of the sensitivity-based approach, with Δx = 10−3
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(a) (b) (c)

FIGURE 18 SA approach with correction. Average and the average plus and minus twice the standard deviation in red. Five
samples in black dashed lines. (a) 𝜌(x, T). (b) u(x, T). (c) p(x, T) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIGURE 19 SA approach with correction, anti-diffusive scheme. Average and the average plus and minus twice the standard
deviation in red. Five samples in black dashed lines. (a) 𝜌(x, T). (b) u(x, T). (c) p(x, T) [Color figure can be viewed at
wileyonlinelibrary.com]

and the diffusive first order scheme, when the sensitivity is computed without the correction term
(13): the spikes in the neighborhood of the shock are very different with respect to the ones we get
with the Monte Carlo approach. As explained above, these spikes are due to the default of high-order
terms in the Taylor expansion. On one hand, these peaks lead to nonphysical values for the solution
(in particular, the confidence intervals contains negative values for the pressure and for the density);
on the other hand, they do not enlarge sufficiently the zone to contain the majority of the samples:
one can observe that four out of five samples fall out of the predicted interval in the neighborhood of
the shock. Nevertheless, we observe that the nonlinear effects are located in a small region around the
shock and elsewhere confidence interval is well estimated by the sensitivity-based method. The results
obtained with the corrected sensitivities are shown in Figure 18: the confidence interval obtained
correspond to the ones obtained with the Monte Carlo approach, apart for the shock zone. Of course,
the sensitivity-based approach does not capture the uncertainty in the neighborhood of the shock,
because it neglects the dependence of the speed of the shock on the parameters. This is why most of
the samples fall out of the zone predicted with the sensitivity-based approach, and it is the case with
and without correction. However, the correction avoids nonphysical values in the confidence interval.
Although the sensitivity-based approach is not able to account for nonlinear effects, contrary to the
Monte Carlo method, it is far less expensive: the Monte Carlo approach requires 1,000 solutions of
the state, while the sensitivity-based approach only one solution of the state and as many solution of
the sensitivity as the number of uncertain parameters, in this case 6. Therefore, this approach can still
be interesting for computationally demanding problems, for which the use of the Monte Carlo method
cannot be envisaged.
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Finally, in Figure 19 we show the results obtained with the anti-diffusive scheme: the differ-
ence with respect to the diffusive scheme is not significant. This is a good news for possible future
developments in 2D: the anti-diffusive scheme is very difficult to adapt in higher dimensional spaces;
in fact the Glimm method has been proven not to work in a two-dimensional space. With these results,
we underline how the numerical diffusion plays an important role in the convergence of the scheme,
but it is not so significant for the final application.

The numerical results of the SA method applied to an uncertainty propagation problem show the
potential and the limits of the method: it is really affordable from a computational point of view, with
the trade-off of being less precise than, for instance, a Monte Carlo method in the discontinuous zones.
If one accepts this loss of precision, the proposed approach remains accurate in the regular zone and
is highly competitive thanks to its very low computational cost.

6 CONCLUSION

In this work, we extended to the complete Euler system the method proposed in [9] for the p-system.
The definition of the source term does not differ significantly and the same shock detectors can be
used in this case. We remark that a contact discontinuity detector is not necessary, since the middle
wave is always a contact discontinuity. However, in this more complex case, the form of the proposed
source term precludes the application of some well-known and widely used numerical schemes such as
the HLL scheme, and all the approximate Riemann solvers with only one middle state. The numerical
results show that the numerical diffusion in the shocks plays an important role and corrupts the con-
vergence to the correct solution even for the complete system. However, we remark that the expected
convergence rate can be achieved without removing the numerical diffusion in the contact discontinu-
ity, which simplifies the definition of the staggered mesh. Currently, we are extending this to the quasi
1D Euler system and we are dealing with some applications, such as optimization and UQ: the results
obtained in those frameworks show the importance of the correction term.
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APPENDIX A: SOLUTION OF THE RIEMANN PROBLEM

In this appendix, we write the exact solution for the system (19) in a specific case (cf. [15]), which
was used as a test case to check the convergence of the numerical schemes proposed. We consider a

FIGURE A1 Structure of the solution for the Riemann problem for the state [Color figure can be viewed at
wileyonlinelibrary.com]

Riemann problem, that is:

V0(x) =

{
VL x < xc,

VR x > xc.

The general solution for this kind of problem is quite complicated, especially for the sensitivity (the
last three components of V). First, we study the state (the first three components of V): the pair
(𝜆2, r2) is linearly degenerated, that is, ∇𝜆2 ⋅ r2 = 0, therefore the middle wave is always a contact
discontinuity; concerning the 1-wave and the 3-wave, they are genuinely nonlinear therefore they
can either be shocks or rarefaction waves. In Figure A1 we show the structure of the state in the
case rarefaction-contact-shock. Concerning the sensitivity, it has the same structure as the state (cf.
Figure A2 in the case rarefaction-contact-shock): the middle wave is always a contact wave, and the
1- and 2-wave are of the same type as for the state. The only difference is that the sensitivity presents
discontinuities in the two extrema of the rarefaction fan (and this is why in Figure A2 the external lines
of the rarefaction fan are thicker).

In the following, we illustrate this analysis of the wave structure by giving the detailed solution for
the state and for the sensitivity in a specific case. The initial data for the state on the physical variables
is the following:

𝜌L = 1, uL = 0, pL = 1, 𝜌R = 0.125, uR = 0, pR = 0.1.

We consider as parameter of interest a = pL, therefore the initial data for the sensitivity is:

𝜌a,L = 𝜌a,R = ua,L = ua,R = pa,R = 0, pa,L = 1.

FIGURE A2 Structure of the solution for the Riemann problem for the sensitivity [Color figure can be viewed at
wileyonlinelibrary.com]
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This choice of initial data leads to the structure in Figures A1 and A2, for the state as well as for
the sensitivity: the 1-wave is a rarefaction and the 3-wave is a shock. For the notation, please refer to
Figure A1 for the state and Figure A2 for the sensitivity. Let us now give the exact formulas for the
state and for the sensitivity.

State solution: the exact solution for the physical variables is given in [15]. Every variable is
given as a function of the pressure in the right-star zone p∗

R, which is computed numerically from the
following implicit relation:

pL = p∗
R

⎛⎜⎜⎜⎜⎝
1 −

(𝛾 − 1) cR
cL

(
p∗R
pR

− 1
)

√
2𝛾

(
2𝛾 + (𝛾 + 1)

(
p∗R
pR

− 1
))

⎞⎟⎟⎟⎟⎠

− 2𝛾
𝛾−1

, (A1)

where c𝓁 =
√

𝛾p𝓁
𝜌𝓁

, with 𝓁 = L, R. In the star regions, we have:

p∗
L = p∗

R = p∗,

u∗
L = u∗

R = u∗ = cR

(
p∗

pR
− 1

)√
2

𝛾(𝛾 + 1) p∗
pR

+ 𝛾(𝛾 − 1)
,

because the velocity u and the pressure p are Riemann invariants across the 2-wave; as for the density
𝜌, we have:

𝜌∗R = 𝜌R
p∗

pR

⎛⎜⎜⎝
1 + 𝛾−1

𝛾+1
pR
p∗

1 + 𝛾−1
𝛾+1

p∗
pR

⎞⎟⎟⎠ ,
𝜌∗L = 𝜌L

(
p∗

pL

) 1
𝛾

.

In the rarefaction wave, we have:

û(x, t) = 2(u∗ − uL)
(𝛾 + 1)u∗

(x − xc
t

)
+ 2

cLu∗ − uL

(
cL − 𝛾+1

2
u∗
)

(𝛾 + 1)u∗ ,

𝜌(x, t) = 𝜌L

(
1 − (𝛾 − 1) û(x, t)

2cL

) 2
𝛾−1

,

p̂(x, t) = pL

(
1 − (𝛾 − 1) û(x, t)

2cL

) 2𝛾
𝛾−1

.

Finally, the solution writes:

U(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

UL x − xc < −cLt,
Û −cLt < x − xc <

(
𝛾+1

2
u∗ − cL

)
t,

U∗
L

(
𝛾+1

2
u∗ − cL

)
t < x − xc < u∗t,

U∗
R u∗t < x − xc < cR

√
𝛾−1
2𝛾

+ 𝛾+1
2𝛾

p∗
pR

t,

UR x − xc > cR

√
𝛾−1
2𝛾

+ 𝛾+1
2𝛾

p∗
pR

t.

(A2)
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Sensitivity solution: here we are solving the second part of system (19), that is the one with the
source term. The source term was designed in such a way that the solution for the sensitivity is the
derivative of the state solution in the regular zones and there are no Dirac delta functions where the
state is discontinuous. Therefore, by differentiating (A1) with respect to a, one obtains the following
explicit formula for p∗

a,R:

p∗
a,R = p∗

a,L = p∗
a = 1 + Θ

1−3𝛾
𝛾−1 Ξp∗

Θ− 2𝛾
𝛾−1 + Θ

1−3𝛾
𝛾−1 (Λ − Ψ)p∗

,

where

Θ = 1 −
(𝛾 − 1)cR

(
p∗

pR
− 1

)
cL

√
4𝛾2 + 2𝛾(𝛾 − 1)

(
p∗
pR

− 1
) ,

Ξ =
cR

(
p∗

pR
− 1

)
ca,R

√
2𝛾

c2
L

√
2𝛾 + (𝛾 + 1)

(
p∗
pR

− 1
) ,

Λ =
√

2𝛾cR

cLpR

√
2𝛾 + (𝛾 + 1)

(
p∗
pR

− 1
) ,

Ψ =
𝛾(𝛾 + 1)cR

(
p∗

pR
− 1

)
cLpR

√
2𝛾
(

2𝛾 + (𝛾 + 1)
(

p∗
pR

− 1
)) 3

2

.

In the star regions, by differentiating the corresponding state, one finds:

u∗
a = 2ca,L

𝛾 − 1

(
1 −

(
p∗

pL

) 𝛾−1
2𝛾

)
− cL

𝛾

(
p∗

pL

) −𝛾−1
2𝛾

(
pLp∗

a − p∗

p2
L

)
,

𝜌∗a,R = 𝜌Rp∗
a

pR

(
1 + 𝛾−1

𝛾+1
pR
p∗

)
(

1 + 𝛾−1
𝛾+1

p∗
pR

) + 𝜌R
p∗

pR

𝛾 − 1
𝛾 + 1

⎛⎜⎜⎜⎝
− pRp∗a

p∗2

(
1 + 𝛾−1

𝛾+1
p∗

pR

)
− p∗a

pR

(
1 + 𝛾−1

𝛾+1
pR
p∗

)
(

1 + 𝛾−1
𝛾+1

p∗
pR

)2

⎞⎟⎟⎟⎠ ,
𝜌∗a,L = 𝜌L

𝛾

pLp∗
a − p∗

p2
L

(
p∗

pL

) 1−𝛾
𝛾

.

Finally, in the rarefaction:

ûa(x, t) =
2uLu∗

(𝛾 + 1)u∗2

x − xc
t

+ 2
ca,Lu∗2 − ca,LuLu∗ + cLuLu∗

a

(𝛾 + 1)u∗2
,

𝜌a(x, t) = −𝜌L

(
ûa(x, t)cL − û(x, t)ca,L

c2
L

)(
1 − (𝛾 − 1)û(x, t)

2cL

) 3−𝛾
𝛾−1

,

p̂a(x, t) =
(

1 − (𝛾 − 1)û(x, t)
2cL

) 2𝛾
𝛾−1

− pL𝛾

(
ûa(x, t)cL − û(x, t)ca,L

c2
L

)(
1 − (𝛾 − 1)û(x, t)

2cL

) 𝛾+1
𝛾−1

.
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The sensitivity has the same structure as the state, therefore:

Ua(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ua,L x − xc < −cLt,
Ûa

(
x−xc

t

)
−cLt < x − xc <

(
𝛾+1

2
u∗ − cL

)
t,

U∗
a,L

(
𝛾+1

2
u∗ − cL

)
t < x − xc < u∗t,

U∗
a,R u∗t < x − xc < cR

√
𝛾−1
2𝛾

+ 𝛾+1
2𝛾

p∗
pR

t,

Ua,R x − xc > cR

√
𝛾−1
2𝛾

+ 𝛾+1
2𝛾

p∗
pR

t.

(A3)

We remark that if one writes the Rankine–Hugoniot conditions across the shock one finds:

−cR

√
𝛾 − 1

2𝛾
+ 𝛾 + 1

2𝛾
p∗

pR
(Ua,R − U∗

a,R) + Fa(UR,Ua,R) − Fa(U∗
R,U∗

a,R) = S.


