Uncertainty quantification

-

Introduction to Sensitivity Analysis

Sensitivity Analysis: study of how changes in the inputs of a model affect the outputs.

input |
parameters b

- Parameter of interest: g,

- State: u, p,
- Model: Navier-Stokes system.

Continuous Sensitivity Equation Method

State equations

ratu—vAqu(u-V)unLVp:f O, t >0,

V-u=0 O, t >0,
u(x,0) =0 O,t=0,

\

u=—g(y)n on I,

u=2~0 on [y,

(vVu—pl)n =0 on I'yy;.

\

The continuous sensitivity equation method [1] is a differentiate-then-discretise technique, which
consists in formally differentiating the state system with respect to the parameter of interest a
and then exchanging the derivatives in space and time with the ones in a. For the Navier—Stokes
equations, one obtains the following system:

Sensitivity equations

9wy — VAU, + (ug-V)u+ (u-Vyu, +Vp,=1£, Q,t>0,
V-u, =0 ), t >0,
ug(x,0) = 0O,t =0,

on Fin,

on Iy,

on I'yyy,

where f; := 9,f + v,Au.

Test case

We consider the domain () here below:
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The inlet velocity is g(y) = ﬁy(é — ), where A is the 3|

uncertain parameter (i.e. 4 = A in this test case). A is a 2|
gaussian random variable of mean y 4 and variance 0124. Its |
probability density function is plotted on the right.
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Validation

From a first order Taylor expansion, one can define the following quantity:
err(u) = u(x, T;a+ da) —u(x, T;a) — dauy(x, T;a) ~ O(da?).

In these Figures, we show the L?
and L® norms of the error for each
7 component of the velocity. The
change in slope occurs when the
| error due to the spatial discretisa-
tion becomes comparable to the
one due to the Taylor expansion
e here above.
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for the Navier-Stokes equations
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Numerical results

The following results are obtained with TrioCFD, using an explicit Euler scheme in time, on a mesh
with & varying between 0.002 and 0.001. To reach the steady state 35 time units were necessary.

y axis
0.6
- 03
x—compon?nt 0.3 _0.225
of the velocity 0:2 . 0.15
0.1 - 0.075
_E

xX—component

of the velocity
sensitivity
y axis
0.6
05
0.027
0.4 »
pressure 03 - 0.2025
0.135

0.2
0.1

- 0.00675

I

1 1.5 X axis

y axis |
0.6 -
0.5 -

0.4 3
pressure sensitivity (5 :

0.2 3
0.1 3

| '1 15 X axis

Uncertainty quantification

The aim is to determine a confidence interval CIx for a variable X, such that P(X € CIx) > 1 —a.
From the Chebyshev’s inequality we have Clx = |ux — X Ux + i'/—)g .
o

Va'
SA provides us with the following first order estimates of the mean u x and the variance 0'}2< [2]

_ 2 _ 2 2
ux = X(pa), Oy = X (pa)og,
which require only one simulation of the state and one of the sensitivity.
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